José Pedro Magalh3es

Chordify

Advanced Functional Programming for Fun and Profit

José Pedro Magalhaes

http://dreixel.net

September 27, 2014
Berlin, Germany

Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

http://dreixel.net

Introduction

» Modelling musical harmony using Haskell

» Applications of a model of harmony:

vy VY VY VvYVvYYy

José Pedro Magalh3es

Musical analysis

Finding cover songs

Generating chords for melodies

Generating chords and melodies

Correcting errors in chord extraction from audio sources
Chordify—a web-based music player with chord recognition

Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Demo: Chordify

Demo:

crordity”

http://chordify.net

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerl

http://chordify.net

What is harmony?

v

Harmony arises when at least two notes sound at the same time

» Harmony induces tension and release patterns, that can be described
by music theory and music cognition

» The internal structure of the chord has a large influence on the
consonance or dissonance of a chord

» The surrounding context also has a large influence

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

What is harmony?

» Harmony arises when at least two notes sound at the same time

» Harmony induces tension and release patterns, that can be described
by music theory and music cognition

» The internal structure of the chord has a large influence on the
consonance or dissonance of a chord

» The surrounding context also has a large influence

Demo: how harmony affects melody

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Simplified harmony theory |

v

A chord is a group of tones separated by intervals of roughly the
same size.

» All music is made out of chords (whether explicitly or not).

» There are 12 different notes. Instead of naming them, we number
them relative to the first and most important one, the tonic. So we
get |, 1b, 1l ... VI4, VI

» A chord is built on a root note. So | also stands for the chord built
on the first degree, V for the chord built on the fifth degree, etc.

» So the following is a chord sequence: | IV I[I” V7 I.

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Simplified harmony theory Il

Models for musical harmony explain the harmonic progression in music:

>

>
>
>
>

Everything works around the tonic (I).

The dominant (V) leads to the tonic.

The subdominant (IV) tends to lead to the dominant.
Therefore, the | IV V | progression is very common.

There are also secondary dominants, which lead to a relative tonic.
For instance, II” is the secondary dominant of V, and I” is the
secondary dominant of IV.

So you can start with |, add one note to get I7, fall into 1V, change
two notes to get to Il7, fall into V, and then finally back to .

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

An example harmonic analysis

Piece
PIT PID PIT

T D T
I T I

| S D |

I I I I

C \Y) V/V C

| /\

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Why are harmony models useful?

Having a model for musical harmony allows us to automatically
determine the functional meaning of chords in the tonal context.
The model determines which chords “fit" on a particular moment in a

song.

Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

José Pedro Magalh3es

Why are harmony models useful?

Having a model for musical harmony allows us to automatically
determine the functional meaning of chords in the tonal context.
The model determines which chords “fit" on a particular moment in a
song. This is useful for:
» Musical information retrieval (find songs similar to a given song)
» Audio and score recognition (improving recognition by knowing
which chords are more likely to appear)
» Mousic generation (create sequences of chords that conform to the
model)

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Application: harmony analysis

Parsing the sequence Gy C7 Guin C7 Fypj D7 G7 Cpaj:

Piece
PID PIT
: T
//\
S D |
V/IV v S D C:maj
V/I I” ins V/IV v V/V \V&
| — | [I
Vmin C:7 V/I I|7 F:maj |||7 G:7
| [
G:min Viin C:7 D:7
|
G:min

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Application: harmonic similarity

v

A practical application of a harmony model is to estimate harmonic
similarity between songs

» The more similar the trees, the more similar the harmony

» We don't want to write a diff algorithm for our complicated model,
we get it automatically by using a generic diff

» The generic diff is a type-safe tree-diff algorithm, part of a student'’s
MSc work at Utrecht University

» Generic, thus working for any model, and independent of changes to
the model

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Application: automatic harmonisation of melodies

Another practical application of a harmony model is to help selecting
good harmonisations (chord sequences) for a given melody:

N

Gtt—— 2 ———

3

5‘:'ala 17 A 1/ P
¢ 12 ¢ 1772 itg 2§
vV III I III II IV III IV \Y4

We generate candidate chord sequences, parse them with the harmony
model, and select the one with the least errors.

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Visualising harmonic structure

Piece
Phr|ase
Ton Dom Ton
l: I\l/laj Sub/\Dom I: I\l/laj
| T — T |

C: Maj III:{\/Iin IV: Maj II:Dlom7 V: Dlom7 C: Maj
|
E:Min F:Maj D:Dom’ G:Dom/’

You can see this tree as having been produced by taking the chords in
green as input. ..

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmonic structure

Piece
Phr|ase
Ton Dom Ton
l: I\l/laj Sub/\Dom I: I\l/laj
| T — T |

C: Maj III:{\/Iin IV: Maj II:Dlom7 V: Dlom7 C: Maj
|
E:Min F:Maj D:Dom’ G:Dom/’

You can see this tree as having been produced by taking the chords in
green as input. .. or the chords might have been dictated by the structure!

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TonMaj — IMaj
TonMin — lmin

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TonMaj — IMaj
TonMin — lmin

Domgy — V£7):n
| Von
| VIS,
| Subgm Domgm
[10 Vi

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TonMaj — IMaj

. m
Tonmin — 1§y Sub i
UbMaj — Himaj

| Vﬁﬁ | IIIrl\'/TIaj I\/Ma\j
VIigy, Submin — V{1

|
| Subgm Domgm
| 1y Vi,

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

A functional model of harmony

Piecean — [Phraseon] ("M e {Maj,Min})

Phrasegy — Tongy Domgy Tongy
| Domgy Tongy

TonMaj — IMaj

. m
Tonmin — 1§y Sub i
UbMaj — Himaj

| Vﬁﬁ | IIIrl\'/TIaj I\/Ma\j
VIigy, Submin — V{1

|
| Subgm Domgm
| 1y Vi,

Simple, but enough for now, and easy to extend.

José Pedro Magalh3des Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Now in Haskell—I
A GADT encoding musical harmony:
data Mode = Majyiode | Minmode
data Piece =V :: Mode.Piece [Phrase 1]

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Now in Haskell—I
A GADT encoding musical harmony:
data Mode = Majyiode | Minmode
data Piece = Vi :: Mode.Piece [Phrase 1]

data Phrase (p :: Mode) where
Phrasey, :: Ton 4 — Dom p — Ton p — Phrase p
Phrasey, :: Dom o — Ton p — Phrase

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Now in Haskell—I
A GADT encoding musical harmony:

data Mode = Majmode | Minmode
data Piece = Vi :: Mode.Piece [Phrase 1]

data Phrase (p :: Mode) where
Phrasey, :: Ton 4 — Dom p — Ton p — Phrase p
Phrasey, :: Dom o — Ton p — Phrase

data Ton (y :: Mode) where
Tonpmaj :: SD | Maj = Ton Majmode
Tonpin 2 SD | Min — Ton Minpode

Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

José Pedro Magalh3es

Now in Haskell—I
A GADT encoding musical harmony:
data Mode = Majyiode | Minmode
data Piece = Vi :: Mode.Piece [Phrase 1]

data Phrase (p :: Mode) where
Phrasey, :: Ton 4 — Dom p — Ton p — Phrase p
Phrasey, :: Dom i — Ton p — Phrase i

data Ton (y :: Mode) where
Tonpmaj :: SD | Maj = Ton Majmode
Tonpin 2 SD | Min — Ton Minpode

data Dom (1 :: Mode) where
Dom; ::SDV Dom’ — Dom p
Dom,::SDV Maj — Dom pu
Doms :: SD VIl Dim — Dom p
Domy :: SDom p — Dom p — Dom p
Doms :: SD Il Dom” — SD V Dom’ — Dom

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Now in Haskell—II

Scale degrees are the leaves of our hierarchical structure:
data DiatonicDegree = | [[| Il | IV |V | VI | VII
data Quality = Maj | Min | Dom’ | Dim

data SD (¢ :: DiatonicDegree) (7 :: Quality) where
SurfaceChord :: ChordDegree — SD ¢ A

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We give Arbitrary instances for each of the datatypes in our
model.

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We give Arbitrary instances for each of the datatypes in our
model.

... but we don't want to do this by hand, for every datatype, and to have
to adapt the instances every time we change the model. .. so we use
generic programming:

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We give Arbitrary instances for each of the datatypes in our
model.

... but we don't want to do this by hand, for every datatype, and to have
to adapt the instances every time we change the model...so we use
generic programming:

gen :: (Representable o, Generate (Rep)
= Gen a

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Generating harmony

Now that we have a datatype representing harmony sequences, how do
we generate a sequence of chords?

QuickCheck! We give Arbitrary instances for each of the datatypes in our
model.

... but we don't want to do this by hand, for every datatype, and to have
to adapt the instances every time we change the model...so we use
generic programming:

gen :: (Representable o, Generate (Rep)
= [(String,Int)] = Gen a

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Examples of harmony generation—I

testGen :: Gen (Phrase Majyioge)
testGen = gen [("Dom4", 3), ("Dom5",4)]
example :: 10 ()
example = let k = Key (Note f C) Majumode
in sample’ testGen >= mapM_ (printOnKey k)
printOnKey :: Key — Phrase Majyode — 10 String

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Examples of harmony generation—I

testGen :: Gen (Phrase Majyiode)
testGen = gen [("Dom4", 3), ("DOIHS", 4)]

example :: 10 ()
example = let k = Key (Note f C) Majumode
in sample’ testGen >= mapM_ (printOnKey k)

printOnKey :: Key — Phrase Majyode — 10 String

> example

[C: Maj, D: Dom?, G: Dom’, C: Maj]

[C: Maj, G: Dom’, C: Maj]

[C: Maj, E: Min, F: Maj, G: Maj, C: Maj]

[C: Maj, E: Min, F: Maj, D: Dom’, G: Dom’, C: Maj]

[C: Maj, D: Min, E: Min, F: Maj, D: Dom’, G: Dom?, C: Maj]

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Examples of harmony generation—II

t

1»‘!»‘1&

i

i
"
"
LY

L]

:

9% £ i # i : ;;
:

= —

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Back to Chordify: chord recognition

Yet another practical application of a harmony model is to improve chord
recognition from audio sources.

092 C 0.96 Em

Chord candidates 094 Gm 0097C
1.00C 1.00G 1.00 Em
Beat number ‘ 1 2 3

How to pick the right chord from the chord candidate list? Ask the
harmony model which one fits best.

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Chordify: architecture

» Frontend

yvyvVvVYVvYy

José Pedro Magalh3es

Reads user input, such as YouTube/Soundcloud/Deezer links, or files
Extracts audio

Calls the backend to obtain the chords for the audio

Displays the result to the user

Implements a queueing system, and library functionality

Uses PHP, JavaScript, MongoDB

Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

http://hackage.haskell.org/package/HarmTrace
http://www.lilypond.org/

Chordify: architecture

» Frontend

» Reads user input, such as YouTube/Soundcloud/Deezer links, or files
Extracts audio
Calls the backend to obtain the chords for the audio
Displays the result to the user
Implements a queueing system, and library functionality
Uses PHP, JavaScript, MongoDB
» Backend
» Takes an audio file as input, analyses it, extracts the chords
» The chord extraction code uses GADTs, type families, generic
programming (see the HarmTrace package on Hackage)
» Performs PDF and MIDI export (using LilyPond)
» Uses Haskell, SoX, sonic annotator, and is mostly open source

yvyvVvVYVvYy

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

http://hackage.haskell.org/package/HarmTrace
http://www.lilypond.org/

Chordify: numbers

Online since January 2013

Top countries: US, UK, Thailand, Philippines, Indonesia, Germany
Visitors: 3M+ (monthly)

Chordified songs: 1.5M+

Registered users: 180K+

vV v v v Y

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Summary

Musical modelling with Haskell:
» A model for musical harmony as a Haskell datatype

> Makes use of several advanced functional programming techniques,
such as generic programming, GADTs, and type families

When chords do not fit the model: error correction
Harmonising melodies

Generating harmonies

vV v v v

Recognising harmony from audio sources

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

Play with it!

http://chordify.net
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/FComp

José Pedro Magalh3es Chordify: Advanced Functional Programming for Fun and Profit, HacBerlin 2014

http://chordify.net
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/FComp

