
Draft version. Rev : 853

Experience Report: Functional Modelling of Musical Harmony

José Pedro Magalhães W. Bas de Haas
Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{jpm,bash}@cs.uu.nl

Abstract
Music theory has been essential in composing and performing
music for centuries. Within Western tonal music, from the early
Baroque on to modern-day jazz and pop music, the function of
chords within a chord sequence can be explained by harmony
theory. Although Western tonal harmony theory is a thoroughly
studied area, formalising this theory is a hard problem.

We present a formalisation of the rules of tonal harmony as
a Haskell (generalized) algebraic datatype. Given a sequence of
chord labels, the harmonic function of a chord in its tonal context
is automatically derived. For this, we use several advanced func-
tional programming techniques, such as type-level computations,
datatype-generic programming, and error-correcting parsers. As a
detailed example, we show how our model can be used to improve
content-based retrieval of jazz songs.

We explain why Haskell is the perfect match for these tasks, and
compare our implementation to an earlier solution in Java. We also
point out shortcomings of the language and libraries that limit our
work, and discuss future developments which may ameliorate our
solution.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; H.5.5 [Information Interfaces
and Presentation]: Sound and Music Computing—Modelling

General Terms Experimentation, Languages

1. Introduction
The deep connection between mathematics and music has been
known at least since the times of Plato (Mountford 1923). In the
realm of tonal harmony in particular, when studying the relation-
ships between sequential chords, we notice order and regularity;
some combinations sound pleasing while others sound peculiar.
These observations led music theorists to develop ways to anal-
yse the function of a chord in its tonal context (e.g. Riemann
1893). Among the first to formalize these theories were Lerdahl
and Jackendoff (1996), whose work inspired the formal grammar
of Rohrmeier (2007, 2011). This grammar was implemented by
De Haas et al. (2009) and used for modelling harmonic similar-
ity. Models of tonal harmony are useful because they explain the
role or function that a musical chord has within a piece of music.

[Copyright notice will appear here once ’preprint’ option is removed.]

For instance, the same musical chord often has different functions
depending on the context in which it occurs.

We present HARMTRACE (Harmony Analysis and Retrieval of
Music with Type-level Representations of Abstract Chords Enti-
ties), an adaptation of the Java approach of De Haas et al. to a
functional setting. Exploring the connection between a context-free
grammar and an algebraic datatype, we represent different musi-
cal harmonies as values of a datatype. Unlike in previous work,
we encode all the musical restrictions in the type itself; strong
static typing guarantees that well-typed values represent harmoni-
cal sequences. Furthermore, a strongly-typed model gives us higher
expressiveness and results in simpler code: through techniques
such as datatype-generic programming and type-level computation,
most of the code is automatically derived from the types. In a way,
the types are the code: most of the code (that would otherwise have
to be written manually) follows directly from the types.

A formal model of musical harmony can be used to improve
many other typical music processing tasks. Content-based Mu-
sic Information Retrieval (MIR, Downie 2003), for instance, is a
rapidly expanding area within multimedia research which aims at
keeping large repositories of digital music maintainable and acces-
sible. Within MIR the notion of similarity is crucial: songs that are
similar in one or more features to a given relevant song are likely to
be relevant as well. The majority of approaches to notation-based
music retrieval focus on melodic similarity. Using our harmony
model, we present a method that allows the retrieval of music based
on harmonic similarity. We show that comparing a harmonic anal-
ysis in tree form, which explains the functions of chords within a
sequence, using a generic edit-distance function predicts harmonic
similarity better than the edit-distance between the original textual
sequences of chords. Chord labels which do not “fit” in our model
are automatically corrected at the parsing stage.

Contribution In this paper we present a new functional model
of Western tonal harmony in Haskell and explain why Haskell is
particularly suited for modelling harmony. We show how our model
can be used to perform automatic harmony analysis of sequences of
textual chord labels, and that such an analysis improves the task of
retrieving harmonically similar pieces. Along the way, we explain
how several features of Haskell, such as type-level computations,
error-correcting parsers and generic programming, are essential to
our approach. All the code of HARMTRACE and the results used
for comparison are available upon request.

The rest of this report is structured as follows: we first introduce
basic concepts of harmony in Section 2, and then explain how
we encode them in Haskell in Section 3. In Section 4 we show
applications of our model, which we evaluate in Section 5. We
conclude in Section 6, discussing the limitations of our system and
pointing out directions for future development.

Draft version 1 2011/3/21

IVIVI V/V

C F D G7 7 C

{Ton TonSDom Dom

Figure 1. A typical chord sequence. The chord labels are printed
below the score, and the scale degrees and functional analysis
above the score.

2. Harmony
The French-American composer Edgard Varèse once defined music
as “organised sound”. In this section we present a very brief intro-
duction on how tonal harmony organises sound in Western music;
for a thorough approach, we refer the reader to Piston and DeVoto
(1991).

We start with the most basic element in music: a tone. A tone
is a sound with a fixed frequency or pitch which can be described
in music notation with a note. All notes have a name, e.g. C, D, E,
etc., and represent tones of a specific pitch. The distance between
two notes is called an interval and is measured in semitones, which
is the smallest interval in Western tonal music. Harmony arises
when two or more tones sound at the same time. Simultaneously
sounding notes form chords, which can in turn be used to form
chord sequences. A chord is a group of tones sounding at the same
time and separated by intervals of roughly the same size. The two
most important factors that characterize a chord are its structure,
determined by the intervals between these notes, and the chord root.
The root is the note on which the chord is built. Chords can be
labelled by describing their root and the relative interval structure
of the tones in the chord.

Figure 1 displays a frequently occurring chord sequence, in the
C major key. The key of a piece of music is the tonal center of
the piece. The same chord sounds differently in pieces of different
keys. On the other hand, a chord sequence that is transposed to a
different key, by moving all notes up or down by a fixed interval,
sounds very similar to the original sequence. Scale degrees are used
to abstract from key and absolute pitch. A scale degree represents
the relative interval between a tone and the root of the key of the
piece. They are typically denoted with Roman numerals, as seen in
Figure 1.

In music, building up and releasing tension is crucial. In the
development of harmonic tension generally three functional roles
are discerned: tonic, dominant and subdominant. The dominant in-
duces maximal tension, the subdominant prepares a dominant by
building up the tension, and the tonic releases tension. Hence, ev-
ery scale degree can be categorized by having a dominant, sub-
dominant or tonic role. Similarly to the preparation of a tonic by a
dominant or a dominant by a subdominant, any scale degree can be
recursively preceded by the scale degree seven semitones up, e.g.
the D7 preceding G7 in Figure 1. This allow the creation of chains
of scale degrees, so-called secondary dominants.

We have presented an extremely condensed view on harmony
theory. Nevertheless, it is clear that within a sequence not ev-
ery chord is equally important. Some chords can easily be re-
moved leaving the global structure of the piece intact, whereas
other chords cannot be removed without altering the way a piece is
perceived. For instance, in Figure 1 the D7 can be removed leaving
the general harmony structure intact, while removing the G7 or the
C at the end would change the harmony structure. This suggests that
the rules of tonal harmony can be formalized hierarchically, analog-
ically to linguistics. This is what we do in the next section, building
on ideas of Rohrmeier (2007, 2011) and the previous formalisation
as a context-free grammar by De Haas et al. (2009). However, it

is important to stress that formal modelling of tonal harmony is a
difficult task, since the rules of harmony are highly ambiguous and
often formulated imprecisely.

3. Encoding harmony as a datatype
We now discuss how we formalize general harmony theory as a
datatype. Throughout the rest of the paper we elide most of the
musical details and concentrate on a small but representative subset
of the rules. The general idea is that we convert an input sequence
of chord labels, such as "C:maj F:maj D:7 G:7 C:maj", into a
value of a Haskell datatype which captures the function of chords
within the sequence. Since we want to abstract from specific keys,
we first translate every chord label into a scale degree. For this to
be possible, we assume we know the key of every input song. For
instance, our previous example is in C major, so it translates to
"I:maj IV:maj II:7 V:7 I:maj".

3.1 Naive approach
Using standard algebraic datatypes, we can encode alternatives as
constructors, sequences as arguments to a constructor, and repeti-
tions as lists. A first (and very simplified) approach could be the
following:

data Piece = Piece [Ton]
data Ton = TD,T Dom Ton | TIMaj Degree
data Dom = DSD,D SDom Dom | DVMaj Degree
data SDom = SIVMaj Degree

We see a piece as a list of tonics. A tonic can translate to the first
scale degree or branch into a dominant node and another tonic
node. Similarly, a dominant can branch into a subdominant and a
dominant, or simply be the fifth degree.

The leaves of our tree are the input labelled scale degrees, which
consist of a root degree (an integer between 1 and 7) together with
a chord class:

data Degree = Deg Int Class
data Class = Maj |Min | Dom | Dim

We can now encode harmonic sequences as values of type Piece:

goodPiece,badPiece :: Piece
goodPiece = Piece [TIMaj (Deg 1 Maj)]
badPiece = Piece [TIMaj (Deg 2 Maj)]

The problem with this representation is evident: non-sensical se-
quences such as badPiece are allowed by the type-checker. We
know that a Tonic can never be the second scale degree: it is ei-
ther the first degree or a Dominant followed by a Tonic. However,
since we do not constrain the Degree argument in TIMaj, we have
to make sure at the value-level that we only accept Deg 1 Maj as
an argument. To guarantee that the model never deals with invalid
sequences we would need a separate proof of code correctness.

3.2 More type information
Fortunately, we can make our model “more typed” simply by using
phantom types to encode degrees and chord classes at the type
level:

data Ton = TD,T Dom Ton | TIMaj (Degree I Maj)
data Degree δ γ = Deg Int Class

Now we detail precisely the root and class of the scale degree
expected by TIMaj; Dom and SDom are adapted in a similar way.
We need type-level scale degrees and classes to use as arguments
to the new Degree type:

data I;data II;data III;data IV;data V;data VI;data VII;

Draft version 2 2011/3/21

data Maj;data Min;data Dom;data Dim;

It only remains to guarantee that Degrees are built correctly. An
easy way to achieve this is to have a type class mediating type-to-
value conversions, and a function to build degrees:

class ToRoot δ where toRoot :: δ → Int
instance ToRoot I where toRoot = 1
. . .

class ToClass γ where toClass :: γ → Class
instance ToClass Maj where toClass = Maj
. . .

deg :: (ToRoot δ ,ToClass γ)⇒ δ → γ → Degree δ γ

deg r c = Deg (toRoot r) (toClass c)

If we also make sure that the constructor Deg is not exported, we
can be certain that our value-level Degrees correctly reflect their
type. Sequences like badPiece above are no longer possible, since
the term TIMaj (deg (⊥ :: II) (⊥ :: Maj)) is not well-typed.

3.3 Secondary dominants
So far we have seen how to encode simple harmonic rules and
guaranteed that well-typed pieces make “sense”. However, we also
need to encode harmonic rules that account for secondary domi-
nants. According to harmony theory, every scale degree can be pre-
ceded by the scale degree of the dominant class seven semitones up.
To encode this notion we need to compute transpositions on scale
degrees. Since we encode the degree at the type-level this means
we need type-level computations. For this we use GADTs (Pey-
ton Jones et al. 2006) and type families (Schrijvers et al. 2008).
GADTs allow us to conveniently restrict the chord root and class
for certain constructors, while type families perform the necessary
transpositions for relative degrees. To support chains of secondary
dominants we change the Degree type as follows:

data Degreen δ γ η where
BaseDeg :: DegreeFinal δ γ → Degreen δ γ (Su η)
ConsV :: Degreen (V/ δ) Dom η → DegreeFinal δ γ

→ Degreen δ γ (Su η)

data DegreeFinal δ γ = Lab Int Class

We now have two constructors for Degreen: BaseDeg is the base
case, which stores a Root and a Class as before. In ConsV we
encode the relative dominants. Its type says we can produce a
Degreen for any root δ and class γ by having a DegreeFinal for that
root and class preceded by a Degreen of root V/ δ of the dominant
class. The type family V/ transposes its argument degree seven
semitones up:

type family V/ δ

type instance V/ I = V
type instance V/ V = II
. . .

To avoid infinite recursion in the parser (Section 4) we use a type-
level natural number in Degreen. This parameter also serves to
control the number of allowed secondary dominants:

data Su η

data Ze
type Degree δ γ = Degreen δ γ (Su (Su (Su (Su Ze))))

Typically we use values between 4 and 7 for η . Its value greatly
affects compilation time; see the discussion in Section 6.

We have shown a very simplified description of our model of
musical harmony as a Haskell datatype. In reality, our model is
larger and more detailed, albeit still far simpler than the hundreds of
pages of Piston and DeVoto (1991), for instance. To provide an idea

Piece

T

T

I

I:maj

D

D

D

V7

V:7

V/V

II7

II:7

S

IV

IV:maj

V/IV

I7

I:7

V/I

Vmin

V:min

S

IV

ins

V/IV

I7

I:7

V/I

Vmin

V:min

Figure 2. The parse tree for a chord sequence similar to the one
in Figure 1. T , D and S denote tonic, dominant and subdominant,
respectively. Secondary dominants are denoted by V/x. The leaves
of the tree denote the actual input strings.

of the kind of structure our datatype models, we show an example
piece as a pretty-printed value of our datatype in Figure 2. Within
this short piece every chord is part of a dominant, subdominant,
or tonic structure, and the IV:maj and G:7 are preceded by their
secondary dominants. Because the I:7 does not resolve to IV:maj,
the parser inserts the expected scale degree IV (see Section 4.1.2).

4. From chord labels to harmonic structure
We have seen how to put Haskell’s advanced type system features
to good use in the definition of a model of tonal harmony. In this
section we further exploit the advantages of a well-typed model
while defining a generic parser from labelled scale degrees (e.g.
"I:maj IV:maj II:7 V:7 I:maj") to our datatype. We also
show other operations on the model, like pretty-printing and diffing.

4.1 Parsing
From the high-level musical structure (e.g. the Ton datatype of Sec-
tion 3.2) we can easily build a parser in applicative style mimicking
the structure of the types:

data Parser α -- abstract
class Parse α where parse :: Parser α

instance Parse Ton where
parse = TD,T <$>parse<∗>parse

<|>TIMaj <$>parse

For the purposes of this paper we keep Parser abstract; in our
implementation we use the uu-parsinglib package (Swierstra
2009). We prefer uu-parsinglib over, say, parsec because our
grammar is highly ambiguous and we can put error correction to
good use, as we will explain later.

The instance of Parse for Ton is trivial because it follows di-
rectly from the structure of the datatype. It can even be obtained
by syntactic manipulation of the datatype declaration: replace | by
<|>, add <$> after the constructor name, separate constructor ar-
guments by <∗> and replace each argument by parse. The code
is tedious to write, and since we have several similar datatypes it
becomes repetitive and long.

To compound the problem, the rules of harmony are naturally
ambiguous, and we often change the model in search of the best
solution. Even more importantly, different musical styles can have
significantly different harmony rules (e.g. baroque harmony versus
jazz), so our solution should support multiple models. We solve
all these problems by not writing instances like the one above. In-
stead, we use datatype-generic programming to derive a parser au-

Draft version 3 2011/3/21

http://hackage.haskell.org/package/uu-parsinglib
http://hackage.haskell.org/package/uu-parsinglib
http://hackage.haskell.org/package/parsec

tomatically in a type-safe way. We use the instant-generics
package, which implements a library similar to that initially de-
scribed by Chakravarty et al. (2009). Due to length considerations
we cannot explain how generic programming works in this paper,
but our generic parser is entirely trivial. The order of the construc-
tors and their arguments determines the order of the alternatives and
sequences; in particular, we avoid left-recursion on our datatypes,
since we do not implement a grammar analysis like Devriese and
Piessens (2011).

4.1.1 Adhoc parsers
The only truly non-generic parser is that for DegreeFinal, which is
also the only parser that consumes any input. It uses the type classes
ToRoot and ToClass as described in Section 3.2.

Unfortunately, we are also forced to write the parser instances
for GADTs such as Degreen, since instant-generics does not
support GADTs. Although the code remains entirely trivial, the
instance heads become more complicated, since they have to reflect
the type equalities introduced by the GADT. As an example, we
show the parser code for Degreen:

instance (Parse (DegreeFinal δ γ)
, Parse (Degreen (V/ δ) Dom η))
⇒ Parse (Degreen δ γ (Su η)) where

parse = BaseDeg <$>parse
<|>ConsV <$>parse<∗>parse

The context of the instance reflects the type of the constructors of
Degreen: BaseDeg introduces the Parse (DegreeFinal δ γ) constraint,
whereas ConsV requires Parse (Degreen (V/ δ) Dom η)) too.

The need for type-level natural numbers becomes evident here;
the instance above is “undecidable” for GHC, meaning that the
rules for instance contexts become relaxed. Normally there are con-
straints on what can be written in the context to guarantee termi-
nation of type-checking. Undecidable instances lift these restric-
tions, with the side-effect that type-checking becomes undecidable
in general. However, we are certain that type-checking will always
terminate since we recursively decrease the type-level natural num-
ber η . This means we also need a “base case instance” where we
use the empty parser which always fails; this is acceptable because
it is never used.

instance Parse (Degreen δ γ Ze) where parse = empty

Note how useful the type class resolution mechanism becomes:
it recursively builds a parser for all possible alternatives, driven
by the type argument η . This also means potentially long type-
checking times; fortunately our current implementation remains
compilable under a minute. We discuss type-checker performance
issues in more detail in Section 6.

4.1.2 Error correction
We cannot hope to be able to model all valid harmonic relations
in our datatype. Furthermore, songs often contain mistakes or
mistyped chords, or sequences of dubious harmonic validity. How-
ever, these things are often a localized problem, and most of the
song still makes sense. In our solution we rely on error correction
while parsing: chords which do not fit the structure are automati-
cally deleted or preceded by inserted chords, according to heuristics
computed from the grammar structure. We keep track of the num-
ber of corrections, since the ratio of corrections to number of input
chords provides a measure of meaningfulness of the parse tree. For
most songs, parsing proceeds with none or very few corrections.
Songs with a very high error ratio denote bad input or wrong key
assignment, which results in meaningless scale degrees.

4.2 Visualising harmonic relations
In a way similar to the generic parser of Section 4, we also have a
generic pretty-printer, which produces output suitable for genera-
tion of graphical representations such as that of Figure 2. Note how
chords inserted by the parser become leaves with the label ins at-
tached. Similar issues with adhoc instances for GADTs arise, which
we solve in the exact same way as described in Section 4.1.1.

4.3 Generic diff
A practical application of our tonal harmony model is estimating
the harmonic similarity of two songs. An easy way to obtain a
measure of similarity between two Pieces is to use a generic diff
algorithm. Just like the parser and the pretty-printer, our generic
diff is derived from the structure of the datatypes, and adapts
automatically to any change. We have implemented it in the style
of Lempsink et al. (2009) for the instant-generics library.
Our diff is based on four primitive generic functions: children,
which returns a (heterogenously-typed) list of all children of a term,
build, which rebuilds a term given a list of new children, eqCon,
which computes equality of terms based only on their top-level
constructor, and typeOf , which returns a unique representation for
the type of a term. For performance reasons we use typeOf from
the standard Data.Typeable library, while the other functions are
easily implemented in instant-generics. However, the generic
diff is rather slow; we discuss this problem in detail in Section 6.

5. Evaluation
In this section we evaluate the parsing results of our system and
compare the retrieval performance of the gdiff similarity measure
with a simple baseline diff on the input tokens.

5.1 Datasets
We have performed our experiment with two datasets: the dataset
of De Haas et al. (2009) (which we call small) and a larger dataset
(large). Both datasets consist of textual chord sequences extracted
from user-generated Band-in-a-Box files that were collected on the
Internet. Band-in-a-Box is a software package that generates ac-
companiment given a chord sequence provided by the user. The
small dataset contains a selection of pieces that “harmonically
make sense”, while the large dataset includes many songs that are
harmonically atypical. This is because the files are user-generated,
and contain peculiar and unfinished pieces, wrong key assignments
and other errors; it can therefore be considered “real life” data.
Within both datasets there are different chord sequences that de-
scribe the same piece in different ways; these can be used to do a re-
trieval experiment. The small dataset contains 72 songs, of which
35 have no similar songs, 11 have one similar song, and 5 have two
other similar songs. The large dataset contains 854 songs of which
485 have no similar songs; the remaining songs have between 1 and
7 similar songs. Note that songs with no similar songs are akin to
noise for the retrieval task (see Section 5.3).

5.2 Parsing results
The parsing results are shown in Table 1. For each dataset, we
show the average time taken to parse a song and the average error
ratio. The error ratio is a measure of how many corrections the
parser performed. We define it as a ratio between the number of
correction steps and the number of chord labels, but we remove
sequences of duplicate chord labels from the input first. A ratio of
0.2, for instance, means that 20% of the significant labels of the
sequence have been altered. Lower ratios indicate that the song fits
our harmony model better.

On the small dataset, which consists of “harmonically correct”
chord sequences, our model performs very well. The songs are

Draft version 4 2011/3/21

http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/package/instant-generics

Dataset Error ratio Time taken (ms)

small 0.067 23.833
large 0.200 381.837

Table 1. Error ratio and parsing runtime averaged over all songs

parsed quickly and with average error ratio below 0.07. The large
datasets is more problematic. The parsing time increases consid-
erably, mostly because the ambiguity of our model can make the
error-correction process rather expensive. The error ratio also in-
creases considerably, but in no way does the parser crash or refuse
to produce a valid output. A higher error ratio is also expected,
since this dataset has a lot of noisy or meaningless songs.

5.3 Matching results
To test gdiff as a similarity measure for musical harmony, we have
performed a retrieval experiment. In this experiment, the task is to
retrieve the similar (but not identical) songs based on the edit dis-
tance of the gdiff algorithm. The distance between all pairs of
songs is calculated and for every song a ranking is constructed by
sorting all other songs on the basis of their distance. To place the
performance of the gdiff algorithm and the difficulty of the task
in perspective, we compare with a baseline algorithm. This method
uses no harmony information whatsoever; we simply tokenize the
input string into a list of Degrees and perform a standard diff on
that list (using the diff package). We use this method to provide
a baseline case; the generic diff, having all the harmony infor-
mation available, has to perform better than this. We call this sim-
ple algorithm baseline, while the generic diff of Section 4.3 is
named gdiff.

For our datasets we know all the clusters of similar songs. We
can therefore analyse the rankings by calculating the Mean Average
Precision (MAP). The MAP is a single-figure measure between 0
and 1 quantifying the precision of the retrieved results at all recall
levels (Manning et al. 2008, Chap. 8, p. 160); a higher MAP value
indicates a better ranking. For the small dataset, gdiff has a MAP
of 0.853, while baseline scores 0.475. In the large dataset the
difference is smaller, but gdiff still outperforms baseline with a
score of 0.510 against 0.395, respectively.

We tested whether the difference in MAP is significant by per-
forming a Wilcoxon Signed-rank test1. We chose the Wilcoxon
Signed-rank test because the underlying distribution of the average
precision over the queries is unknown and this Signed-ranks test
does not require the distribution to be normally distributed. The
differences between the baseline and the gdiff dataset were sta-
tistically significant, W = 1058.5, p< 0.0001 on the small dataset,
and also on the large dataset, with W = 80352, p < 0.0001.

5.4 Comparison with previous work
There are considerable differences between our HARMTRACE sys-
tem and the context-free grammar approach of De Haas et al.
(2009) (hereafter referred to as ISMIR09):
Error-correcting parsers One of the drawbacks of ISMIR09 is
that a sequence of chords that does not match the context-free
specification precisely will be rejected. For instance, appending
one nonsensical chord to an otherwise grammatically correct se-
quence of symbols will still force the parser to reject the complete
sequence, not returning any partial information about what it has
parsed. HARMTRACE solves this rejection problem by using error
correcting parsers (Swierstra 2009). This allows us to formalize the
rules of tonal harmony that we are certain of, and leave the border-
line cases to the parser.

1 All statistical tests were performed with the R language.

Ambiguity control Music, and harmony in particular, is intrinsi-
cally ambiguous. Hence, certain chords can have multiple mean-
ings within a tonal context. This is reflected in both ISMIR09 and
HARMTRACE. A major drawback of ISMIR09 is that it is very lim-
ited in ways of controlling the ambiguity of the grammar. ISMIR09
uses weighing to order the grammar rules by adding low weights
to rules that explain rare phenomena. However, controlling condi-
tional execution would require some form of high-level grammar
generation system, since all rules are replicated for each scale de-
gree and chord class. On the other hand, HARMTRACE supports
more flexible conditional execution, through the use of GADT’s
and type families. An example is the restriction of secondary dom-
inants to chords of the Dom class (Section 3.3).

Parsing performance There are considerable differences in the
parsing performance of HARMTRACE compared to ISMIR09 on
both datasets. HARMTRACE takes 1.65s to parse the small dataset,
while ISMIR09 takes more than 9m. When we compare parsing
performance on the large dataset the differences become even
more prominent: ISMIR09 rejects 89.7% of the 854 pieces and
3.9% of the dataset had to be excluded because the parsing pro-
cess would not terminate (due to unconstrained ambiguities). The
remaining pieces parse in 84m13s, while HARMTRACE parses the
entire dataset in 5m14s. All measurements were done on the same
Intel Core 2 duo E6600, 2.4 GHz. machine using GHC 7.0.2 and
Java SE 1.6.0 17.

Retrieval effectiveness Both HARMTRACE as well as ISMIR09
have been evaluated on the small dataset. When we compare
the retrieval effectiveness of the gdiff approach with the best
performing variant of ISMIR09 (MAP of 0.859), we conclude there
is no statistically significant difference (W = 685, p = 1.00, using
the same test procedure as in Section 5.3). Because ISMIR09 rejects
89.7 percent of the pieces, no sensible comparison between the two
approaches on the large data set can be performed.

Grammar simplicity In ISMIR09 all context-free rules were writ-
ten by hand, which is not only a tedious and error-prone enter-
prise, but can also result in very large grammars. By using Haskell’s
GADTs to represent the rules of tonal harmony, we gain more ex-
pressive power, and the grammar becomes shorter and easier to
maintain. For instance, GADTs allow us to write rules that hold
for every Maj chord. In their approach, this is expressed by having
one rule for major I, II, III, etc.

Code repetition Our Haskell system is more concise than the
Java implementation of ISMIR09. An analysis of the number of
significant source lines of code2 reveals that ISMIR09 has 5545
lines, while HARMTRACE has 1221, less than one fourth.

6. Discussion and conclusion
We have shown how Haskell can be used to implement a model
of musical harmony. Our solution outperforms a previous Java ap-
proach both in terms of speed, functionality and elegance. However,
the current implementation has a number of limitations, which we
now describe in detail.

Type-checker performance As mentioned in Section 4.1.1, it is
easy to make the type-checker take very long to compile our code.
We managed to keep the type-checking time acceptably low, but
this is only because we are “helping” it. We minimized the num-
ber of type families used (four in total, all similar to V/), and we
(automatically) place each instance declaration in a separate mod-
ule, since this speeds up compilation considerably. Furthermore, we
represent each scale degree as an independent type; type-level com-
putations, such as transposition, are then indexed over each type. A

2 Using http://cloc.sourceforge.net/.

Draft version 5 2011/3/21

http://hackage.haskell.org/package/Diff
http://www.r-project.org/
http://cloc.sourceforge.net/

more concise way of representing scale degrees would be to use
type-level naturals. Transposition is then simply summing mod-
ulo the total number of scale degrees. Unfortunately this makes the
compilation time unacceptably high. We hope that native type-level
naturals are added to GHC soon3 so that we can simplify our type-
level computations without a performance penalty.
Parser performance The higher average parsing time per song
on the larger datasets shown in Table 1 is caused mostly by a
couple of songs taking very long. In the large dataset, only about
6% of the songs take longer than one second to parse. The three
slowest songs take 41s, 24s, and 15s to parse. They are long songs,
and either contain chord sequences which our model does not
account for or are harmonically atypical. In these pathological
cases the parser combinators take very long to compute the possible
corrections. This is somewhat understandable, since our grammar
is highly ambiguous and there are multiple non-trivial possible
corrections. However, such long parsing times are undesirable;
perhaps the number of steps to lookahead in the parser could be
dynamically adjusted based on the number of possible alternatives.
This would hopefully lead to shorter parsing times, albeit at the cost
of potentially worse corrections.
Matching performance The generic diff is a powerful tool that
solves the matching problem almost “for free” (Section 5.3). How-
ever, to use it we need new generic functions to be derived for ev-
ery datatype. This means longer compilation times, but also more
adhoc instances, since there is no suitable generic programming li-
brary supporting GADTs. These instances amount to over 200 lines
of repetitive and error-prone code. Worse even, it runs very slowly;
our implementation uses type-safe runtime cast, which prevents fu-
sion of the generic representations. This prevents us from using the
generic diff on datasets with thousands of songs.

Besides addressing the limitations pointed out above, we also
plan to add new functionality to our system:
Mode and key In Section 3 we only discussed the rules for pieces
in a major key. However, many songs are written in a minor key;
this affects the expected scale degrees at the leaves, invalidates
some alternatives and creates others. Nevertheless, a large number
of rules holds for both pieces in a major and a minor key. Currently
we handle this using a similar model for pieces in a minor key:

data Piece = PieceMaj [TonMaj] | PieceMin [TonMin]

However, this leads to unnecessary code duplication, since most of
the harmony rules are independent of mode. A better alternative
would be to index pieces by their mode:

data MajMode;data MinMode;
data Piece µ = Piece [Ton µ]

The type variable µ would then be indexed with either MajMode
or MinMode, similarly to δ for degrees and γ for chord classes.
We think this would be an elegant way of expressing mode in the
model.

Additionally, we currently restrict ourselves to songs in a single
key, but often songs change the key throughout their development.
This means that scale degree I no longer maps to chord C, but to F,
for instance. Indexing the model over the key and introducing rules
for modulation which would change this key would be a good way
of encoding key changes.

Unfortunately, such changes would make the entire model in-
dexed over one or more type variables, which would preclude
the use of generic programming altogether. We plan to build into
instant-generics the necessary infrastructure to be able to deal
with indexed datatypes adequately.

3 http://hackage.haskell.org/trac/ghc/ticket/4385

Other applications We show how to use our model for improving
music retrieval, but we believe other tasks can be improved sim-
ilarly. For instance, algorithms for computing chord labels from
audio or images (scores) often recognize a set of possible chords
at each step, with different probabilities. Our model could then be
used to check which chords are harmonically valid at each step,
therefore introducing harmony knowledge into the algorithm. An-
other interesting development would be to implement a (generic)
enumerator over our datatypes; this would correspond to a genera-
tor of harmonically valid sequences of chords.

Overall, we are convinced that strong static typing and generic
programming are essential tools in modelling musical harmony. We
hope our approach paves the way for future functional approaches
to musical modelling and processing.

Acknowledgments
This work has been partially funded by the Portuguese Foundation
for Science and Technology (FCT) via the SFRH/BD/35999/2007
grant, and by the Dutch ICES/KIS III Bsik project MultimediaN.
We thank Jurriaan Hage, Johan Jeuring, Andres Löh, and Frans
Wiering for their helpful comments, and Doaitse Swierstra for his
exhaustive technical support in using his parser combinators.

References
M. M. T. Chakravarty, G. C. Ditu, and R. Leshchinskiy. Instant generics:

Fast and easy, 2009. Draft version.
D. Devriese and F. Piessens. Explicitly recursive grammar combinators—

a better model for shallow parser DSLs. In PADL’11, pages 84–98.
Springer, 2011.

J. Stephen Downie. Music information retrieval. Annual Review of Infor-
mation Science and Technology, 37(1):295–340, 2003.

W. B. de Haas, M. Rohrmeier, R. C. Veltkamp, and F. Wiering. Modeling
harmonic similarity using a generative grammar of tonal harmony. In
Proceedings of the Tenth International Conference on Music Information
Retrieval (ISMIR’09), pages 549–554, 2009.

E. Lempsink, S. Leather, and A. Löh. Type-safe diff for families of
datatypes. In WGP’09, pages 61–72. ACM, 2009.

F. Lerdahl and R. Jackendoff. A generative theory of tonal music. The MIT
Press, 1996. ISBN 0-262-62107-X.

C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

J. F. Mountford. The musical scales of Plato’s Republic. The Classical
Quarterly, 17(3/4):125–136, 1923.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP’06, pages 50–61.
ACM, 2006.

W. Piston and M. DeVoto. Harmony. Victor Gollancz, 1991.
H. Riemann. Vereinfachte Harmonielehre; oder, die Lehre von den tonalen

Funktionen der Akkorde. Augener, 1893.
M. Rohrmeier. A generative grammar approach to diatonic harmonic struc-

ture. In Proceedings of the 4th Sound and Music Computing Conference,
pages 97–100, 2007.

M. Rohrmeier. Towards a generative syntax of tonal harmony. Journal of
Mathematics and Music, 5(1), 2011.

R. Schrijvers, S. Peyton Jones, M. M. T. Chakravarty, and M. Sulzmann.
Type checking with open type functions. In ICFP’08, pages 51–62.
ACM, 2008.

S. Doaitse Swierstra. Combinator Parsing: A Short Tutorial, pages 252–
300. Springer-Verlag, 2009.

Draft version 6 2011/3/21

http://hackage.haskell.org/package/instant-generics
http://hackage.haskell.org/trac/ghc/ticket/4385

	Introduction
	Harmony
	Encoding harmony as a datatype
	Naive approach
	More type information
	Secondary dominants

	From chord labels to harmonic structure
	Parsing
	Adhoc parsers
	Error correction

	Visualising harmonic relations
	Generic diff

	Evaluation
	Datasets
	Parsing results
	Matching results
	Comparison with previous work

	Discussion and conclusion

