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Abstract. We present a view on the problem of formal verification of
imperative programs. Formal verification is usually associated to func-
tional programming languages, but a real-world application will probably
be written in imperative main-stream languages. To have the power of
formal verification in an imperative language, we present, for demon-
strative purposes, an instance of a technique to extend a language with
support for logical annotations. We present a short description of LISS

(the imperative language chosen to be extended) and Why (the verifi-
cation condition generator), and after a detailed analysis of the mech-
anisms used to generate proof-obligations, we conclude, analyzing the
global quality of the result.

1 Introduction

1.1 Context

The term “program verification” is normally used with two meanings: on one
hand, it refers to proving the correctness of intended algorithms with respect
to a certain formal specification or property; on the other hand, it refers to
obtaining guarantees of the program’s behavior with respect to aspects such as
termination, memory access, etc. On both cases, it’s an instance of a recurring
slogan in computer programming: it’s not enough for the programmer to know
how to create working programs; it is also necessary to know how to present the
formal guarantees of quality and/or validity of the program. The work reported
here intends precisely to explore that competence.

1.2 Case study

Since its introduction, in 1969, Hoare logic [5] is regarded as a very important
tool for program verification. Based on this methodology, one commonly uses:

– A verification condition generator, and
– A theorem prover or proof-assistant

Here we analyze the use of the Why language [3] as a generic verification condi-
tion generator (both in the language to analyze and the prover/proof-assistant
to use), stemming from the Caduceus [4] example as a verification condition
generator for the C language. Thus, the objective is to explore all the steps in



this process, allowing this work to be integrated into a more general initiative
in the Proof-Carrying Code [7] field.

Our work basically consists of two distinct parts: firstly we explore the use of
the Caduceus tool (which, given a properly annotated C program, allows to gen-
erate a set of verification conditions which can then be proved automatically or
in an assisted fashion with a proof-assistant); secondly, we construct a tool sim-
ilar to Caduceus, allowing the annotation of programs in a small but sufficiently
expressive imperative language.

1.3 Structure of this document

The rest of this article is structured as follows: the next section presents a short
description/introduction to the Caduceus tool, used as model of what we pro-
pose to do. In section 3 we present the LISS language (which we used, after
extension with support for logical annotations, as input language), then a brief
introduction to Why (the output language) in section 4, followed by a detailed
analysis on the translation process (section 5). Finally, we present some examples
of the translation (section 6) and conclude in section 7, also presenting possible
directions for future work.

2 Analyzing Caduceus

Caduceus [4] is a verification tool for C programs at source level. Reading com-
ments structured in a special syntax, this tool can generate proof-obligations
which, after being proved in any of the supported provers, will ensure the va-
lidity and/or safety of the original C program. Apart from function specification
properties, Caduceus also supports dynamic memory addressing issues, such as
null pointer dereferencing and out-of-bounds array access. It uses the Why tool
to generate the proof obligations, transforming the initial C program into input
for Why.

1 /∗@ re qu i r e s \ v a l i d ( p )
2 @ ensures ∗p >= 0
3 @∗/
4 void abs ( int ∗p) {
5 i f (∗p < 0) ∗p = −∗p ;
6 }

Listing 1.1. Example of Caduceus annotations on a C program

Listing 1.1 shows an example of Caduceus annotations on a C program. These
are:

– A precondition requiring the pointer p to be validly allocated when the
function abs is called;

– A postcondition guaranteing the value pointed by p after the execution is
greater than or equal to zero.



The translation process from Caduceus annotations to Why code is described
in some detail in [4], together with the necessary axiomatic basis for array and
pointer support (and a soundness analysis). Our tool will follow a similar struc-
ture, since it’s built for a similar purpose.

3 From: LISS

LISS1 (Language of Integers, Sequences and Sets) [2] is a programming language
traditionally used by the DI-UM2 and by the DI-UBI3 as an instrument in the
study of language processing and compilers. It clearly served our purposes, being
a toy imperative programming language, so we used it as a basis to extend with
logical annotations.

The syntax already defined for this language was not clear enough, and since
it was our intention to have full control over it, we started by redefining LISS
according to the techniques of [8], later extending it to serve our purpose4.

Briefly, the language includes the following components5:

– Datatypes
• Booleans
• Integer numbers
• Mutable integer sequences
• Integer sets (defined by comprehension)
• Static integer arrays

– Local functions with pre and post-conditions
– Control flow instructions

• Attribution for all types (except arrays) and array positions
• If-then-else
• while loop with variant and invariant annotations
• for loop which iterates a variable over a range of integer values
• foreach loop which iterates a variable over the values in a sequence

– Basic input/output instructions
– A unitary instruction skip

4 To: Why

The Why tool6 [3], developed at the French Laboratoire de Recherche en Infor-
matique (LRI), takes an annotated program in a small imperative language of
1 Compiler webpage at http://www.di.uminho.pt/~gepl/LISS/
2 Webpage at http://www.di.uminho.pt/
3 Webpage at http://www.di.ubi.pt/
4 This implies that we cannot compare the behavior of a program compiled with the

(old) compiler with the behavior of the same program while interpreted, since there
are modifications to the language structure.

5 A complete grammar of the language can be found on the supporting webpage at
http://twiki.di.uminho.pt/twiki/bin/view/Research/ALiss.

6 Webpage at http://why.lri.fr/



its own as input and generates verification conditions in diverse formats. These
formats are compatible with different provers, including (but not restricted to)
Coq7, PVS, Isabelle, Hol (proof-assistants) and Simplify, CVC Lite and haRVey
(automatic provers). Its main advantages are:

– It’s a verification condition generator for a language specifically designed for
the interpretation of already existing programming languages. It includes
normal constructions for imperative programming languages and logical an-
notations, but also exceptions, recursive functions and polymorphism.

– Allows the declaration of new logical models (types, functions, predicates and
axioms) which can then be used in the programs and annotations. In this way,
adaptation to new types and constructions (for instance, an arithmetical type
of limited precision) can be easily achieved, axiomatizing or leaving them to
be proved on the prover side.

– Supports a wide range of existing provers, allowing for combination of their
features in the proof of a single program.

Let us take a short example written in the Why language:

1 l o g i c min : int , i n t −> i n t
2 axiom min ax : f o r a l l x , y : i n t . min (x , y ) <= x
3 parameter r : i n t r e f
4 l e t f (n : i n t ) = r := min ! r n { r <= r@ }

Listing 1.2. Why example

Line-by-line, we have:

1. Declaring a function, together with its type and arity. Independently of how
this function will be interpreted on the prover-side, its definition is enough
for usage within Why.

2. Axiom introduction over the logical property min used in line 1.
3. A parameter is a value whose existence is assumed, i.e. belongs to the envi-

ronment. Here the parameter is called r and its type is reference to integer
(note the similarity to Ocaml’s syntax).

4. Definition of a function f, without precondition and with a postcondition
stating that the final value of r is less or equal than its initial value. The
current value of a reference x is, inside annotations, referred to as x, while as
part of an instruction is referred as !x. Inside postconditions, the notation
x@ refers to the value of x in its initial state (i.e. in the precondition).

After processing by the tool, the code in listing 1.2 is transformed into suit-
able input for the prover/proof-assistant of choice.



Fig. 1. Overall system architecture

5 Translation

In this section we present the general structure of our solution (figure 1), dis-
cussing all the involved components and their integration into a coherent tool
(completely implemented in the Haskell language8).

5.1 Parsing and pretty-printing

Initially, all the infrastructure used for parsing and pretty-printing was written
in the Utrecht University Parser Combinators style [9]. However, the parser
7 Webpage at http://coq.inria.fr/
8 Webpage at http://www.haskell.org



has since been rebuilt, this time using Parsec [6] (the pretty-printing, however,
was maintained). The respective Abstract Syntax Trees (ASTs) have also been
represented using Haskell data types.

5.2 Checker

The Checker is an intermediate processing step, intending to correct the output
of the parser (which knows nothing about types). For instance, in an assignment
of a variable to another variable, the parser cannot know what the types of these
variables are, so it will just infer a generic assignment. The Checker looks at the
types of the variables, checks that they match and turns the assignment into a
typed assignment, providing information which might be necessary later in the
translation (or evaluation) process.

In case there are type errors in the program (such as using an integer variable
as the condition of an if expression), they are detected and reported at this step.

5.3 Evaluator

The existence of an evaluation mechanism for LISS expressions is important,
since not only it allows for easier testing of programs, but also could be used for
program simplification (like constant folding, for instance). Thus, we developed
the Evaluator, coupled with its Environment, which can roughly be seen as a
translation from LISS to Haskell, interpreting the former using the functional-
ities of the latter.9

5.4 Axiomatic basis

As with Caduceus and C pointers, there was a need to introduce new axioms
regarding the LISS datatypes and operations not directly supported by Why.

Input/Output and skip Instructions read and write require a represen-
tation, as does the skip instruction. The Why source of these is represented in
figure 1.3. Basically the interest of these is to correctly type the operations in
Why.

1 parameter read :
2 v : i n t r e f −>
3 { } uni t w r i t e s v { }
4

5 parameter wr i t e :
6 v : i n t −>
7 { } uni t { }
8

9 l o g i c nop : un i t

Listing 1.3. Input/Output operations

9 Its denotational semantics are not included here, but the interested reader is referred
to the (earlier referred) supporting webpage.



Arrays The built-in representation of arrays of Why was used, which contains
all the common operations over arrays, and also logical operations like testing
if an array is sorted and if an array is a permutation of another one. These can
also be, in the future, included in LISS.

Sequences In order to support sequences, a new type is introduced and the
necessary operations, like constructors seqnil and cons, destructors head and
tail, and a length operation. Needed axioms for these operations are also
introduced. The Why source for this type is not included here.

Sets As with sequences, an axiomatic basis is provided for this new type with
operations like inset that tests if an integer is a member of a set, union and
intersect, as well as a representation for an empty set. A fragment of the Why
source is represented in figure 1.4. Unfortunately, this basis for sets is yet to be
properly tested.

1 type s e t
2

3 l o g i c i n s e t : int , s e t −> bool
4 l o g i c i n t e r s e c t : set , s e t −> s e t
5 l o g i c union : set , s e t −> s e t
6 l o g i c s e t n i l : s e t
7

8 axiom s e t i n s e t n i l :
9 f o r a l l i : i n t .

10 i n s e t ( i , s e t n i l ) = f a l s e
11

12 axiom s e t i n t e r s e c t n i l l :
13 f o r a l l s : s e t .
14 i n t e r s e c t ( s , s e t n i l ) = s e t n i l
15

16 axiom s e t i n s e t i n t e r s e c t 1 :
17 f o r a l l s1 : s e t . f o r a l l s2 : s e t . f o r a l l i : i n t .
18 i n s e t ( i , i n t e r s e c t ( s1 , s2 ) ) = i n s e t ( i , s1 )
19

20 axiom set comm union :
21 f o r a l l a : s e t . f o r a l l b : s e t .
22 union ( a , b) = union (b , a )
23

24 . . .

Listing 1.4. Why axiomatic support for sets

5.5 Analyzer

The objective of the translation is to know how to represent each element of
the LISS syntax into a valid Why operation. Specification of this correspondence



is represented as a sort of a “translation grammar”, which for reasons of space
limitation cannot be included here, but can be consulted online. There is also
the need of an environment during the translation process in order to generate
“fresh” names for variables and labels.

There is no interest in analyzing here the full translation grammar10, so we’ll
just present the example in figure 2. This represents the translation of a LISS
integer expression. As can be seen, most of the translation is quite straightfor-
ward. Things to be taken into account here are the use of ! operator in Why to
access the value of a variable and the use of our predefined operator why head
(refer to section 5.4), which introduces the precondition that the sequence isn’t
empty.

JiKintexpσ = i

JvarKintexpσ = !var

Ja[ ie ]Kintexpσ = a[ JieKintexpσ ]

J− ieKintexpσ = - JieKintexpσ

Jie1 + ie2Kintexpσ = Jie1Kintexpσ + Jie2Kintexpσ

Jie1− ie2Kintexpσ = Jie1Kintexpσ - Jie2Kintexpσ

Jie1× ie2Kintexpσ = Jie1Kintexpσ * Jie2Kintexpσ

Jie1 / ie2Kintexpσ = Jie1Kintexpσ / Jie2Kintexpσ

Jie1 rem ie2Kintexpσ = Jie1Kintexpσ % Jie2Kintexpσ

Jhead seKintexpσ = why head ( JseKseqexpσ )

Jcall name varsKintexpσ = name ( vars )

Fig. 2. Integer expressions translation to Why

Other important choices in all of the translation process are the following:

– Functions are translated to let ... in statements in order to be faithful
to the semantics of LISS

– The loops for and foreach are “syntatic sugar”. They are translated to
while loops

– For now, for and foreach have no invariant, only a variant to guarantee
termination

5.6 Syntactic incompatibility

As referred before, the whole project was developed using the Haskell language.
In this translation phase, we were confronted with a problem due to Haskell’s
10 The complete translation grammar can be consulted online at the supporting web-

page.



strong type system: as both ASTs of Why and LISS were defined as mutually
recursive datatypes, a direct translation function posed as a complicated problem
(see example on figure 3 — the code on the left column is the Why AST and the
one on the right belongs to the LISS AST).

data Term =
TConst Const

| Sum Term Term
| Sub Term Term
| TNegation Term
| . . .

data Const =
IntConst Int

| BoolConst Bool
| . . .

data Prog =
PConst Constant

| PIdent I d e n t i f i e r
| Assign I d e n t i f i e r Prog
| . . .

data IntExp =
IntConst Int

| Sum IntExp IntExp
| Sub IntExp IntExp

data BoolExp =
BoolConst Bool

| Negation BoolExp

data Statement =
IntAss ign IntVar IntExp

| . . .

Fig. 3. As you can see it’s impossible to safely define a function from IntExp always
to the same type because depending on the context it could be a Term or a Prog

The solution was to “flatten” the Why AST representation into a single
datatype. This solves the problem, but allows invalid Why code to be gener-
ated. A further step of checking would be advisable, but as the code generation
is controlled by us, this was left undone.

6 Examples

A simple example to exemplify the translation process is presented in listing 1.5.

1 program sum {
2 d e c l a r a t i o n s
3 a , b , c −> I n t eg e r ;
4

5 pre x >= 0 && y >= 0 ;
6 post r e s u l t == old (x ) + old (y ) ;
7 subProgram sum(x −> Integer , y −> I n t eg e r ) −> I n t eg e r {
8 d e c l a r a t i o n s
9 ;

10 statements
11 i nva r i an t x == old (x )+(old (y )−y ) && y >= 0;
12 var i ant y ;
13 whi le ( y > 0) {
14 x := x+1;
15 y := y−1;
16 } ;



17 re turn x ;
18 } ;
19

20 statements
21 wr i t e ”a :\n ” ; read a ;
22 wr i t e ”b :\n ” ; read b ;
23 i f ( a >= 0 && b >= 0) then { c := sum(a , b) ; wr i t e ”a + b : ” ;

wr i t e c ; } ;
24 }

Listing 1.5. Inductive sum in LISS

It shows a possible implementation of an inductive definition of the sum of
two natural numbers, including pre- and postconditions and a loop variant and
invariant.

1 l e t example =
2 l e t a = r e f 0 in
3 l e t b = r e f 0 in
4 l e t c = r e f 0 in
5 l e t sum(x : i n t r e f ) ( y : i n t r e f ) =
6 { ( ( x >= 0) and (y >= 0) ) }
7 begin
8 a1 :
9 whi le ( ( ! y>0) ) do

10 { i nva r i an t ( ( x = (x@a1 + (y@a1 − y ) ) ) and (y >= 0) )
var i ant y }

11 x := ( ! x + 1) ;
12 y := ( ! y − 1)
13 done ;
14 ! x
15 end
16 { ( r e s u l t = (x@ + y@) ) } in
17 begin
18 nop ; read ( a ) ;
19 nop ; read (b) ;
20 i f ( ( ( ! a>=0)&&(!b>=0)) )
21 then
22 begin
23 c := sum(a ) (b) ; nop ;
24 wr i t e ( ! c )
25 end
26 e l s e
27 begin
28 nop
29 end ;
30 nop
31 end

Listing 1.6. Translation in Why

Its translation in Why (listing 1.6) is not so easy to read, partly because of the
introduction of superfluous nop instructions, but the semantics are preserved.

After running Why on this code, 3 proof-obligations are generated, corre-
sponding to the loop initialization, preservation and termination. The precondi-
tion stated in the function is given as hypothesis for the proofs, and the post-
condition is implied by the loop termination, so no proof is necessary. In Coq [1],
the strategy intuition suffices to prove all the 3 lemmas.



7 Conclusion and future work

7.1 Limitations

Given the complexity of the translation and the exploratory nature of this work,
some details were left without proper testing in the Analyzer, and this com-
ponent is recognized as the “weakest link” in the solution, naturally being a
good candidate for further refinement in the future. Those details include, for
instance, recursive functions and set handling, the former (being allowed by
Why) being translated directly and lacking effective testing, and the latter hav-
ing an axiomatic basis constructed by us, but lacking proper integration with
the Analyzer.

7.2 Future work

We present the directions of future work into two separate possibilities, one
addressing this project as an isolated work, and another integrating it into a
possible, forthcoming new project for the DI/CCTC11 in the area of PCC.

On this project Naturally, future work on this tool should focus on its current
limitations. For that end, together with further testing and refinement of the
Analyzer component, we can suggest:

– Allowing for more functionalities in LISS, such as predefined functions for
arrays and sequences;

– Considering semantical changes to the arrays, bringing them closer to the
usual semantics on imperative languages (pass-by-reference) — this could
imply the need for a complex memory model, as the one used by Caduceus;

– Lifting functionalities already available in Why to LISS (such as operations
on sorted arrays and permutations).

– Constructing a complete PCC compilation environment, from the annotated
LISS code to a final binary executable and additional safety proof. This, as
was suggested to us, would add considerable interest to the solution and
make it easier to use as teaching tool and laboratory for new verification
techniques.

On a more generic initiative in the PCC field For this purpose, we think
it’s wise to report the main difficulties encountered during the development of
the tool, intending to ease the future development of similar tools through the
prediction of similar problems. Thus, we concluded that:

– The Why language is suited for this purpose. It is sufficiently documented
and produces the expected output to several provers. Additionally, other

11 The University of Minho research unit in Informatics — http://cctc.di.uminho.

pt/



examples such as Caduceus12 and Krakatoa13 are already available and can
be studied as models for new translations.

– The choice of the language for the development of the project is an important
issue. We have used Haskell due to personal preference, but this implies
having to represent the Why language’s syntax and develop (at least) a pretty-
printer. Such development is not necessary if one uses OCaml (which is the
language used in Why).

– The translation process itself can be troublesome if the semantics of concepts
(such as variable scope, pass-by-value vs. pass-by-reference, mutable vs. im-
mutable references, etc.) are different in the languages. It is then advisable
to have these concepts clearly defined in the source language first, and then
analyze its existance/semantics in Why and finally construct an adequate
translation, solving the semantical differences in a coherent fashion.
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