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Abstract
Haskell’s deriving mechanism supports the automatic generation
of instances for a number of functions. The Haskell 98 Report
only specifies how to generate instances for the Eq, Ord, Enum,
Bounded, Show, and Read classes. The description of how to gen-
erate instances is largely informal. The generation of instances
imposes restrictions on the shape of datatypes, depending on the
particular class to derive. As a consequence, the portability of in-
stances across different compilers is not guaranteed.

We propose a new approach to Haskell’s deriving mechanism,
which allows users to specify how to derive arbitrary class in-
stances using standard datatype-generic programming techniques.
Generic functions, including the methods from six standard Haskell
98 derivable classes, can be specified entirely within Haskell 98
plus multi-parameter type classes, making them lightweight and
portable. We can also express Functor, Typeable, and many other
derivable classes with our technique. We implemented our deriving
mechanism together with many new derivable classes in the Utrecht
Haskell Compiler.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

1. Introduction
Generic programming has come a long way: from its roots in
category theory (Backhouse et al. 1999), passing through dedi-
cated languages (Jansson and Jeuring 1997), language extensions
and pre-processors (Hinze et al. 2007; Löh 2004) until the flurry
of library-based approaches of today (Rodriguez Yakushev et al.
2008). In this evolution, expressivity has not always increased:
many generic programming libraries of today still cannot compete
with the Generic Haskell pre-processor, for instance. The same ap-
plies to performance, as libraries tend to do little regarding code
optimization, whereas meta-programming techniques such as Tem-
plate Haskell (Sheard and Peyton Jones 2002) can generate near-
optimal code. Instead, generic programming techniques seem to
evolve in the direction of better availability and usability: it should
be easy to define generic functions and it should be trivial to use
them. Certainly some of the success of the Scrap Your Boilerplate
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approach (SYB, Lämmel and Peyton Jones 2003, 2004) is due to its
availability: it comes with the Glasgow Haskell Compiler (GHC),
the main Haskell compiler, which can even derive the necessary
type class instances to make everything work without clutter.

To improve the usability of generics in Haskell, we believe
a tighter integration with the compiler is necessary. In fact, the
Haskell 98 standard already contains some generic programming,
in the form of derived instances (Peyton Jones et al. 2003, Chapter
10). Unfortunately, the report does not formally specify how to
derive instances, and it restricts the classes that can be derived to
six only (Eq, Ord, Enum, Bounded, Show, and Read). GHC has
since long extended these with Data and Typeable (the basis of
SYB), and more recently with Functor, Foldable and Traversable.
Due to the lack of a unifying formalism, these extensions are not
easily mimicked in other compilers, which need to reimplement the
instance code generation mechanism.

To address these issues, we propose an approach to specifying
how to derive an instance of a class, together with new behavior for
the deriving mechanism in Haskell to automatically derive such
a class. To allow for portability across compilers, our approach
requires only Haskell 98 with multi-parameter type classes and
support for a new compiler pragma. Specifically, our contributions
are:

• We describe a new datatype-generic programming library for
Haskell. Although similar in many aspects to other approaches,
our library requires almost no extensions to Haskell 98; the
most significant requirement is support for multi-parameter
type classes.

• We show how this library can be used to extend the deriving
mechanism in Haskell, and provide sample derivings, notably
for the Functor class.

• We provide a detailed description of how the representation for
a datatype is generated. In particular, we can represent almost
all Haskell 98 datatypes.

• We provide a fully functional implementation of our library
in the Utrecht Haskell Compiler (UHC, Dijkstra et al. 2009).
Many useful generic functions are defined using generic deriv-
ing in the compiler.

We also provide a package which compiles both in UHC and GHC,
showing in detail the code that needs to added to the compiler, the
code that should be generated by the compiler, and the code that is
portable between compilers.1

The remainder of this paper is structured as follows: first we
give a brief introduction to generic programming in Haskell (Sec-
tion 2), which also introduces the particular library we use. We pro-
ceed to show how to define generic functions (Section 3), and then

1 http://dreixel.net/research/code/gdmh.tar.gz
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describe the necessary modifications to the compiler for supporting
our approach (Section 4). Finally, we discuss alternative designs
(Section 5), review related work (Section 6), propose future work
(Section 7) and conclude in Section 8.

2. Generic programming
We use the generic function encode as a running example through-
out this paper. This function transforms a value into a sequence of
bits:

data Bit = 0 | 1
class Encode α where

encode :: α → [Bit ]

We want the user to be able to write

data Exp = Const Int | Plus Exp Exp
deriving (Show,Encode)

and to use encode like

test :: [Bit ]
test = encode (Plus (Const 1) (Const 2))

This should be all that is necessary to use encode. The user should
need no further knowledge of generics, and encode can be used in
the same way as show, for instance.

Behind the scenes, the compiler generates an instance for
Encode Exp based on a generic specification of instances of class
Encode. There are several ways to specify such an instance,
both using code generation and datatype-generic approaches. We
choose a datatype-generic approach because it is type-safe and el-
egant (Hinze et al. 2007). We will discuss alternative designs and
motivate our choice in more detail in Section 5. For now we pro-
ceed to describe our new generic programming library. The three
basic ingredients for generic programming, as described by Hinze
and Löh (2009), are:

1. Support for overloaded functions

2. A run-time type representation

3. A generic view on data

Since we use Haskell, (1) is easy: an overloaded (ad-hoc polymor-
phic) function is a method of a type class. For (2), we introduce a
type representation similar to the one used in the regular (Van
Noort et al. 2008) and instant-generics (Chakravarty et al.
2009) libraries, in Section 2.1. For (3), we again use type classes
to encode embedding-projection pairs for user-defined datatypes in
Section 2.3.

2.1 A run-time type representation
The choice of a run-time type representation affects not only the
compiler writer but also the expressiveness of the whole approach.
A simple representation is easier to derive, but might not allow
the definition of some generic functions. More complex representa-
tions are more expressive, but require more work for the automatic
derivation of instances.

We present a set of representation types that tries to balance
these factors. We use the common sum-of-products representation
without explicit fixpoints but with explicit abstraction over a sin-
gle parameter. Therefore, representable types are functors, and we
can compose types. Additionally, we provide useful types for en-
coding meta-information (such as constructor names) and tagging
arguments to constructors. We show examples of how these repre-
sentation types are used in Section 2.4.

The basic ingredients of the sum-of-products representation
types are:

data U1 ρ = U1

data (+) φ ψ ρ = L1 {unL1 :: φ ρ } | R1 {unR1 :: ψ ρ }
data (×) φ ψ ρ = φ ρ × ψ ρ

We encode lifted sums with (+) and lifted products with (×).
Nullary products are encoded with lifted unit (U1).2

The type variable ρ is present in all representation types: it
represents the parameter over which we abstract. We use an explicit
combinator to mark the occurrence of this parameter:

newtype Par1 ρ = Par1 {unPar1 :: ρ }
As our representation is functorial, we can encode composition.

Although we cannot express this in the kind system, we require the
first argument of composition to be a representable type construc-
tor. The second argument can only be the parameter, a recursive
occurrence of a functorial datatype, or again a composition. We use
Rec1 to represent recursion, and (◦) for composition:

newtype Rec1 φ ρ = Rec1 {unRec1 :: φ ρ }
newtype (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

PolyP (Jansson and Jeuring 1997) treats composition in a similar
way.

Finally, we have two types for representing meta-information
and tagging:

newtype K1 ι γ ρ = K1 {unK1 :: γ }
newtype M1 ι γ φ ρ = M1 {unM1 :: φ ρ }

We use K1 for tagging and M1 for storing meta-information. The
role of the ι parameter in these types is made explicit by the
following type synonyms:

data D
data C
data S
data R
data P

type D1 = M1 D
type C1 = M1 C
type S1 = M1 S
type Rec0 = K1 R
type Par0 = K1 P

We use Rec0 to tag occurrences of (possibly recursive) types of
kind ? and Par0 to mark additional parameters of kind ? (other than
ρ). For meta-information, we use D1 for datatype information, C1
for constructor information and S1 for record selector information.
We group five combinators into two because in many generic func-
tions the behavior is independent of the meta-information or tags.
In this way, fewer trivial cases have to be given. We present the
meta-information associated with M1 in detail in the next section.

Note that we abstract over a single parameter ρ of kind ?. This
means we will be able to express generic functions such as

fmap :: (α → β )→ φ α → φ β

but not

bimap :: (α → γ)→ (β → δ )→ φ α β → φ γ δ

For bimap we need another type representation that can distinguish
between the parameters. All representation types need to carry one
additional type argument. However, we think that, in practice, few
generic functions require abstraction over more than a single type
parameter.

2.2 Meta-information
For some generic functions we need information about datatypes,
constructors, and records. This information is stored in the type
representation:

2 We also have lifted void (V1) to represent nullary sums, but for simplicity
we omit it from this discussion and from the generic functions in Section 3.



class Datatype γ where
datatypeName :: γ → String
moduleName :: γ → String

class Selector γ where
selName :: γ → String
selName = const ""

class Constructor γ where
conName :: γ → String
conFixity :: γ → Fixity
conFixity = const Prefix
conIsRecord :: γ → Bool
conIsRecord = const False

Names are unqualified. We provide the datatype name together with
the module name. This is the only meta-information we store for a
datatype, although it could be easily extended to add the kind, for
example. We only store the name of a selector. For a constructor, we
also store its fixity and mark if it has fields. This last information is
not strictly necessary, as it can be inferred by looking for non-empty
selNames, but it simplifies some generic function definitions. The
datatypes Fixity and Associativity are unsurprising:

data Fixity = Prefix | Infix Associativity Int
data Associativity = LeftAssociative | RightAssociative

| NotAssociative

We provide default definitions for conFixity and conIsRecord to
simplify instantiation for prefix constructors that do not use record
notation.3

Finally, we tie the meta-information to the representation:

instance (Datatype γ)⇒ Datatype (M1 D γ φ ρ) where
datatypeName = datatypeName◦unMeta
moduleName = moduleName ◦unMeta

instance (Constructor γ)⇒ Constructor (M1 C γ φ ρ) where
conName = conName◦unMeta

instance (Selector γ)⇒ Selector (M1 S γ φ ρ) where
selName = selName ◦unMeta

unMeta :: M1 ι γ φ ρ → γ

unMeta =⊥

Function unMeta operates at the type-level only, so it does not need
an implementation. We provide more details in Section 4.5, and the
examples later in Section 2.4 and Section 3.6 also clarify how we
use these classes.

Note that we could encode the meta information as an extra
argument to M1:

data M1 ι γ φ ρ = M1 Meta (φ ρ)
data Meta = Meta String Fixity . . .

However, with this encoding we have trouble writing generic pro-
ducers, since when we are producing an M1 we have to produce
a Meta for which we have no information. With the above repre-
sentation we avoid this problem by using type-classes to fill in the
right information for us. See Section 3.5 for an example of how this
works.

3 We also provide an empty default selName because all constructor argu-
ments will be wrapped in an S1, independently of using record notation or
not. We omit this in the example representations of this section for space
reasons, but it becomes clear in Section 4.

2.3 A generic view on data
We obtain a generic view on data by defining an embedding-
projection pair between a datatype and its type representation. We
use the following classes for this purpose:

class Representable0 α τ where
from0 :: α → τ χ

to0 :: τ χ → α

class Representable1 φ τ where
from1 :: φ ρ → τ ρ

to1 :: τ ρ → φ ρ

We use τ to encode the representation of a standard type. Since τ is
built from representation types, it is functorial. In Representable1,
we encode types of kind ?→ ?, so we have the parameter ρ . In
Representable0 there is no parameter, so we invent a variable χ

which is never used.
All types need to have an instance of Representable0. Types of

kind ?→ ? also need an instance of Representable1. This sepa-
ration is necessary because some generic functions (like fmap or
traverse) require explicit abstraction from a single type parame-
ter, whereas others (like show or enum) do not. Given the different
kinds involved, it is unavoidable to have two type classes for this
representation. Note, however, that we have a single set of repre-
sentation types (apart from the duplication for tagging recursion
and parameters).

Avoiding extensions Since we want to avoid using advanced
Haskell extensions such as type families (Schrijvers et al. 2008)
or functional dependencies (Jones 2000), we use a simple multi-
parameter type class for embedding-projection pairs. In fact, τ is
uniquely determined by α (and φ ). We could encode the represen-
tation type more naturally with a type family:

class Representable0 α where
type Rep0 α ::?→ ?
from0 :: α → Rep0 α χ

to0 :: Rep0 α χ → α

Since type families and functional dependencies are not yet part
of any Haskell standard, we do not use them. Instead, we use
multi-parameter type classes, and solve the ambiguities that arise
by coercing with asTypeOf .

2.4 Example representations
We now show how to represent some standard datatypes. Note
that all the code in this section is automatically generated by the
compiler, as described in Section 4.

Representing Exp. The meta-information for datatype Exp looks
as follows:

data $Exp
data $ConstExp
data $PlusExp

instance Datatype $Exp where
moduleName = "ModuleName"

datatypeName = "Exp"

instance Constructor $ConstExp where conName = "Const"

instance Constructor $PlusExp where conName = "Plus"

In moduleName, "ModuleName" is the name of the module where
Exp lives. The particular datatypes we use for representing the
meta-information at the type-level are not needed for defining
generic functions, so they are not visible to the user. In this pa-
per, we prefix them with a $.

The type representation ties the meta-information to the sum-
of-products representation of Exp:



type RepExp
0 =

D1 $Exp ( C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow: at the recursive occurrences
we use Exp, and not RepExp

0 .
The embedding-projection pair implements the isomorphism

between Exp and RepExp
0 :

instance Representable0 Exp RepExp
0 where

from0 (Const n) = M1 (L1 (M1 (K1 n)))
from0 (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))
to0 (M1 (L1 (M1 (K1 n)))) = Const n
to0 (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′

Here it is clear that from0 and to0 are inverses: the pattern of from0
is the same as the expression in to0, and vice-versa.

Representing lists. The representation for a type of kind ?→ ?
requires an instance for both Representable1 and Representable0.
For lists

data List ρ = Nil | Cons ρ (List ρ) deriving (Show,Encode)

we generate the following code:

type RepList
0 ρ =

D1 $List ( C1 $NilList U1
+ C1 $ConsList (Par0 ρ × Rec0 (List ρ)))

instance Representable0 (List ρ) (RepList
0 ρ) where

from0 Nil = M1 (L1 (M1 U1))
from0 (Cons h t) = M1 (R1 (M1 (K1 h× K1 t)))
to0 (M1 (L1 (M1 U1))) = Nil
to0 (M1 (R1 (M1 (K1 h× K1 t)))) = Cons h t

We omit the definitions for the meta-information, which are similar
to the previous example. We use Par0 to tag the parameter ρ , as we
view lists as a kind ? datatype for Representable0. This is different
in the Representable1 instance:

type RepList
1 = D1 $List ( C1 $NilList U1

+ C1 $ConsList (Par1 × Rec1 List))

instance Representable1 List RepList
1 where

from1 Nil = M1 (L1 (M1 U1))
from1 (Cons h t) = M1 (R1 (M1 (Par1 h× Rec1 t)))
to1 (M1 (L1 (M1 U1))) = Nil
to1 (M1 (R1 (M1 (Par1 h× Rec1 t)))) = Cons h t

We treat parameters and recursion differently in RepList
0 and RepList

1 .
In RepList

0 we use Par0 and Rec0 for mere tagging; in RepList
1 we use

Par1 and Rec1 instead, which store the parameter and the recursive
occurrence of a type constructor, respectively. We will see later
when defining generic functions (Section 3) how these are used.

Representing type composition. We now present a larger exam-
ple, involving more complex datatypes, to show the expressiveness
of our approach. Datatype Expr represents abstract syntax trees of
a small language:

infixr 6 ∗
data Expr ρ = Const Int

| Expr ρ ∗ Expr ρ

| VarExpr {unVar :: Var ρ }
| Let [Decl ρ ] (Expr ρ)

data Decl ρ = Decl (Var ρ) (Expr ρ)

data Var ρ = Var ρ | VarL (Var [ρ ])

Note that Expr makes use of an infix constructor (∗), has a selector
(unVar), and uses lists in Let. Datatype Var is nested, since in the
VarL constructor Var is called with [ρ ]. These oddities are present
only for illustrating how our approach represents them. We show
only the essentials of the encoding of this set of mutually recursive
datatypes, starting with the meta-information:

data $TimesExpr
data $VarExprExpr

data $UnVar

instance Constructor $TimesExpr where
conName = "*"

conFixity = Infix RightAssociative 6
instance Constructor $VarExprExpr where

conName = "Var_Expr"

conIsRecord = True
instance Selector $UnVar where selName = "unVar"

We have to store the fixity of the ∗ constructor, and also the fact that
VarExpr has a record. We store its name in the instance for Selector,
and tie the meta-information to the representation:

type RepExpr
1 = D1 $Expr

( ( C1 $ConstExpr (Rec0 Int)
+ C1 $TimesExpr (Rec1 Expr × Rec1 Expr))

+ ( C1 $VarExprExpr (S1 $UnVar (Rec1 Var))
+ C1 $LetExpr (([ ] ◦ Rec1 Decl)× Rec1 Expr)))

In RepExpr
1 we see the use of S1. Also interesting is the represen-

tation of the Let constructor: the list datatype is applied not to the
parameter ρ but to Decl ρ , so we use composition to denote this.
Note also that we are using a balanced encoding for the sums (and
also for the products). This improves the performance of the type-
checker, and makes generic encoding more space-efficient, for in-
stance.

We omit the representation for Decl. For Var we use composi-
tion again:

type RepVar
1 = D1 $Var

( C1 $VarVar Par1
+ C1 $VarLVar (Var ◦ Rec1 [ ]))

In the VarL constructor, Var is applied to [ρ ]. We represent this as
a composition with Rec1 [ ].

When we use composition, the embedding-projection pairs be-
come slightly more complicated:

instance Representable1 Expr RepExpr
1 where

from1 (Const i) = M1 (L1 (L1 (M1 (K1 i))))
from1 (e1 ∗ e2) = M1 (L1 (R1 (M1 (Rec1 e1 × Rec1 e2))))
from1 (VarExpr v) = M1 (R1 (L1 (M1 (M1 (Rec1 v)))))
from1 (Let d e) =

M1 (R1 (R1 (M1 (Comp1 (fmap Rec1 d)× Rec1 e))))
to1 (M1 (L1 (L1 (M1 (K1 i))))) = Const i
to1 (M1 (L1 (R1 (M1 (Rec1 e1 × Rec1 e2))))) = e1 ∗ e2
to1 (M1 (R1 (L1 (M1 (M1 (Rec1 v)))))) = VarExpr v
to1 (M1 (R1 (R1 (M1 (Comp1 d × Rec1 e))))) =

Let (fmap unRec1 d) e

We need to use fmap to apply the Rec1 constructor inside the lists.
In this case we could use map instead, but in general we require the
first argument to ◦ to have a Functor instance so we can use fmap.
In to1 we need to convert back, this time mapping unRec1.



For Var, the embedding-projection pair is similar:

instance Representable1 Var RepVar
1 where

from1 (Var x) = M1 (L1 (M1 (Par1 x)))
from1 (VarL xs) = M1 (R1 (M1 (Comp1 (fmap Rec1 xs))))
to1 (M1 (L1 (M1 (Par1 x)))) = Var x
to1 (M1 (R1 (M1 (Comp1 xs)))) = VarL (fmap unRec1 xs)

Note that composition is used both in the representation for the
first argument of constructor Let (of type [Decl ρ ]) and in the nested
recursion of VarL (of type Var [ρ ]). In both cases, we have a recur-
sive occurrence of a parametrized datatype where the parameter is
not just the variable ρ . Recall our definition of composition:

data (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

The type φ is applied not to ρ , but to the result of applying ψ to ρ .
This is why we use ◦ when the recursive argument to a datatype is
not ρ , like in [Decl ρ ] and Var [ρ ]. When it is ρ , we can simply
use Rec1.

We have seen how to represent many features of Haskell
datatypes in our approach. We give a detailed discussion of the
supported datatypes in Section 7.1.

3. Generic functions
In this section we show how to define type classes with derivable
functions.

3.1 Generic function definition
Function encode is a method of a type-class:

data Bit = 0 | 1

class Encode α where
encode :: α → [Bit ]

We cannot provide instances of Encode for our representation
types, as those have kind ?→ ?, and Encode expects a parameter of
kind ?. We therefore define a helper class, this time parametrized
over a variable of kind ?→ ?:

class Encode1 φ where
encode1 :: φ χ → [Bit ]

For constructors without arguments we return the empty list, as
there is nothing to encode. Meta-information is discarded:

instance Encode1 U1 where
encode1 = [ ]

instance (Encode1 φ)⇒ Encode1 (M1 ι γ φ) where
encode1 (M1 a) = encode1 a

For a value of a sum type we produce a single bit to record the
choice. For products we concatenate the encoding of each element:

instance (Encode1 φ ,Encode1 ψ)⇒ Encode1 (φ + ψ) where
encode1 (L1 a) = 0 : encode1 a
encode1 (R1 a) = 1 : encode1 a

instance (Encode1 φ ,Encode1 ψ)⇒ Encode1 (φ × ψ) where
encode1 (a× b) = encode1 a++ encode1 b

It remains to encode constants. Since constant types have kind ?,
we resort to Encode:

instance (Encode φ)⇒ Encode1 (K1 ι φ) where
encode1 (K1 a) = encode a

Note that while the instances for the representation types are given
for the Encode1 class, only the Encode class is exported and al-
lowed to be derived. This is because its type is more general, and

because we need a two-level approach to deal with recursion: for
the K1 instance, we recursively call encode instead of encode1. Re-
call our representation for Exp (simplified and with type synonyms
expanded):

type RepExp
0 = K1 R Int + K1 R Exp× K1 R Exp

Since Int and Exp appear as arguments to K1, and our instance
of Encode1 for K1 ι φ requires an instance of Encode φ , we need
instances of Encode for Int and for Exp. We deal with Int in the next
section, and Exp in Section 3.3. Finally, note that we do not need
Encode1 instances for Rec1, Par1 or (◦). These are only required
for generic functions which make use of the Representable1 class.
We will see an example in Section 3.4.

3.2 Base types
We have to provide the instances of Encode for the base types:

instance Encode Int where encode = . . .
instance Encode Char where encode = . . .

Since Encode is exported, a user can also provide additional base
type instances, or ad-hoc instances (types for which the required
implementation is different from the derived generic behavior).

3.3 Default definition
We miss an instance of Encode for Exp. Instances of generic func-
tions for representable types rely on the embedding-projection
pair to convert from/to the type representation and then apply the
generic function:

encodeDefault :: (Representable0 α τ,Encode1 τ)
⇒ τ χ → α → [Bit ]

encodeDefault rep x = encode1 ((from0 x) ‘asTypeOf ‘ rep)

Function encodeDefault tells the compiler what to fill in for the
instance of each of the derived types. Because we do not want
to use functional dependencies for portability reasons, we pass
the representation type explicitly to function encodeDefault. This
function uses the representation type to coerce the result type of
from0 with asTypeOf . This slight complication is a small price to
pay for extended portability.

Now we can show the instance of Encode for Exp and List:

instance Encode Exp where
encode = encodeDefault (⊥ :: RepExp

0 χ)
instance (Encode ρ)⇒ Encode (List ρ) where

encode = encodeDefault (⊥ :: RepList
0 ρ χ)

Both instances look similar and trivial. However, the instance for
List requires scoped type variables to type-check. We can avoid the
need for scoped type variables if we create an auxiliary local func-
tion encodeList with the same type and behavior of encodeDefault:

instance (Encode ρ)⇒ Encode (List ρ) where
encode = encodeList ⊥ where

encodeList :: (Encode ρ)⇒ RepList
0 ρ χ → List ρ → [Bit ]

encodeList = encodeDefault

Here, the local function encodeList encodes in its type the corre-
spondence between the type List ρ and its representation RepList

0 ρ .
Its type signature is required, but can easily be obtained from the
type of encodeDefault by replacing the type variables α and τ with
the concrete types for this instance.

For completeness, we give the instance for Exp in the same
fashion:

instance Encode Exp where
encode = encodeExp ⊥ where



encodeExp :: RepExp
0 χ → Exp→ [Bit ]

encodeExp = encodeDefault

It might seem strange that we choose not to use Haskell’s built-
in functionality for default definitions for class methods. Unfortu-
nately we cannot use default methods, for two reasons:

1. Since we avoid using type families and functional dependen-
cies, we need to explicitly pass the representation type as an
argument to encodeDefault.

2. A default case would force us to move the Representable0 α τ

and Encode1 τ class constraints to the Encode class, possibly
preventing ad-hoc instances for non-representable types and
exposing Encode1 to the user.

However, if the compiler is to generate instances for Exp and
other representable datatypes automatically, how does it know
which function to use as default? The alternative to standard
Haskell default methods is to use a naming convention for this
function (like appending Default to the class function name, as in
our example). It is more reliable to use a pragma:

{−# DERIVABLE Encode encode encodeDefault #−}

This pragma takes three arguments, which represent (respectively):

1. The class which we are defining as derivable

2. The method of the class which is generic (and therefore needs
a default definition)

3. The name of the function which serves as a default definition

Such a pragma also has the advantage of indicating derivability
for a particular class. We could use a keyword such as derivable to
signal that a class is allowed to be derived:

derivable class Encode α where . . .

However, by using a pragma instead (as described above) we ensure
more portability, as compilers without support for our derivable
type classes can still compile the code.

Since a class can have multiple generic methods, multiple prag-
mas can be used for this purpose. Note, however, that a derivable
class can only have non-generic methods if there is a default def-
inition for these, as otherwise we have no means for implement-
ing the non-generic methods. Alternatively, we could treat generic
methods as default methods, filling in the generic definition auto-
matically if the user does not give a definition. This would allow
classes to have normal, generic, and default methods. However, it
would complicate the code generation mechanism.

3.4 Generic map
In this subsection we define the generic map function fmap, which
implements the Prelude’s fmap. Function fmap requires access to
the parameter in the representation type. As before, we export a
single class together with an internal class where we define the
generic instances:

class Functor φ where
fmap :: (ρ → α)→ φ ρ → φ α

class Functor1 φ where
fmap1 :: (ρ → α)→ φ ρ → φ α

Unlike in Encode, the type arguments to Functor and Functor1
have the same kind, so we do not really need two classes. How-
ever, for consistency, we use the same style as for kind ? generic
functions.

We apply the argument function in the parameter case:

instance Functor1 Par1 where
fmap1 f (Par1 a) = Par1 (f a)

Unit and constant values do not change, as there is nothing we can
map over. We apply fmap1 recursively to meta-information, sums
and products:

instance Functor1 U1 where
fmap1 f U1 = U1

instance Functor1 (K1 ι γ) where
fmap1 f (K1 a) = K1 a

instance (Functor1 φ)⇒ Functor1 (M1 ι γ φ) where
fmap1 f (M1 a) = M1 (fmap1 f a)

instance (Functor1 φ ,Functor1 ψ)⇒ Functor1 (φ + ψ) where
fmap1 f (L1 a) = L1 (fmap1 f a)
fmap1 f (R1 a) = R1 (fmap1 f a)

instance (Functor1 φ ,Functor1 ψ)⇒ Functor1 (φ × ψ) where
fmap1 f (a× b) = fmap1 f a× fmap1 f b

If we find a recursive occurrence of a functorial type, we call fmap
again, to tie the recursive knot:

instance (Functor φ)⇒ Functor1 (Rec1 φ) where
fmap1 f (Rec1 a) = Rec1 (fmap f a)

The remaining case is composition:

instance (Functor φ ,Functor1 ψ)⇒ Functor1 (φ ◦ ψ) where
fmap1 f (Comp1 x) = Comp1 (fmap (fmap1 f ) x)

Recall that we require the first argument of (◦) to be a user-defined
datatype, and the second to be a representation type. Therefore, we
use fmap1 for the inner mapping (as it will map over a represen-
tation type) but fmap for the outer mapping (as it will require an
embedding-projection pair). This is the general structure of the in-
stance of (◦) for a generic function.

Finally, we define the default method:

{−# DERIVABLE Functor fmap fmapDefault #−}
fmapDefault :: (Representable1 φ τ,Functor1 τ)

⇒ τ ρ → (ρ → α)→ φ ρ → φ α

fmapDefault rep f x = to1 (fmap1 f (from1 x ‘asTypeOf ‘ rep))

Now Functor can be derived for user-defined datatypes. The usual
restrictions apply: only types with at least one type parameter and
whose last type argument is of kind ? can derive Functor. The
compiler derives the following instance for List:

instance Functor List where
fmap = fmapList (⊥ :: RepList

1 ρ) where
fmapList :: RepList

1 ρ → (ρ → α)→ List ρ → List α

fmapList = fmapDefault

Note that the instance Functor List also guarantees that we can use
List as the first argument to (◦), as the embedding-projection pairs
for such compositions need to use fmap.

The instances derived for Expr, Decl, and Var are similar.

3.5 Generic empty
We can also easily express generic producers: functions which
produce data. We will illustrate this with function empty, which
produces a single value of a given type:

class Empty α where empty :: α

This function is perhaps the simplest generic producer, as it con-
sumes no data. It relies only on the structure of the datatype to pro-
duce values. Other examples of generic producers are the methods
in Read and the Arbitrary class from QuickCheck, and binary’s
get. As usual, we define an auxiliary type class:



class Empty1 φ where
empty′ :: φ χ

Most instances of Empty1 are straightforward:

instance Empty1 U1 where
empty′ = U1

instance (Empty1 φ)⇒ Empty1 (M1 ι γ φ) where
empty′ = M1 empty′

instance (Empty1 φ ,Empty1 ψ)⇒ Empty1 (φ × ψ) where
empty′ = empty′ × empty′

instance (Empty φ)⇒ Empty1 (K1 ι φ) where
empty′ = K1 empty

For units we can only produce U1. Meta-information is produced
with M1, and since we encode the meta-information using type
classes (instead of using extra arguments to M1) we do not have to
use⊥ here. An empty product is the product of empty components,
and for K1 we recursively call empty. The only interesting choice
is for the sum type:

instance (Empty1 φ)⇒ Empty1 (φ + ψ) where
empty′ = L1 empty′

In a sum, we always take the leftmost constructor for the empty
value. Since the leftmost constructor might be recursive, function
empty might not terminate. More complex implementations can
look ahead to spot recursion, or choose alternative constructors af-
ter recursive calls, for instance. Note also the similarity between our
Empty class and Haskell’s Bounded: if we were defining minBound
and maxBound generically, we could choose L1 for minBound and
R1 for maxBound. This way we would preserve the semantics
for derived Bounded instances, as defined by Peyton Jones et al.
(2003), while at the same time lifting the restrictions on types that
can derive Bounded. Alternatively, to keep the Haskell 98 behavior,
we could give no instance for×, as enumeration types will not have
a product in their representations.

The default method simply applies to0 to empty′:

{−# DERIVABLE Empty empty emptyDefault #−}
emptyDefault :: (Representable0 α τ,Empty1 τ)

⇒ τ χ → α

emptyDefault rep = to0 (empty′ ‘asTypeOf ‘ rep)

Now the compiler can produce instances such as:

instance Empty Exp where
empty = emptyExp ⊥ where

emptyExp :: RepExp
0 χ → Exp

emptyExp = emptyDefault

instance (Empty ρ)⇒ Empty (List ρ) where
empty = emptyList ⊥ where

emptyList :: (Empty ρ)⇒ RepList
0 ρ χ → List ρ

emptyList = emptyDefault

Instances for other types are similar.

3.6 Generic show
To illustrate the use of constructor and selector labels, we define
the shows function generically:

class Show α where
shows :: α → ShowS
show :: α → String
show x = shows x ""

We define a helper class Show1, with shows1 as the only method.
For each representation type there is an instance of Show1. The

extra Bool argument will be explained later. Datatype meta-infor-
mation and sums are ignored. For units we have nothing to show,
and for constants we call shows recursively:

class Show1 φ where
shows1 :: Bool→ φ χ → ShowS

instance (Show1 φ)⇒ Show1 (D1 γ φ) where
shows1 b (M1 a) = shows1 b a

instance (Show1 φ ,Show1 ψ)⇒ Show1 (φ + ψ) where
shows1 b (L1 a) = shows1 b a
shows1 b (R1 a) = shows1 b a

instance Show1 U1 where
shows1 U1 = id

instance (Show φ)⇒ Show1 (K1 ι φ) where
shows1 (K1 a) = shows a

The most interesting instances are for the meta-information of a
constructor and a selector. For simplicity, we always place paren-
theses around a constructor and ignore infix operators. We do dis-
play a labeled constructor with record notation. At the constructor
level, we use conIsRecord to decide if we print surrounding brack-
ets or not. We use the Bool argument to shows1 to encode that we
are inside a labeled field, as we will need this for the product case:

instance (Show1 φ ,Constructor γ)⇒ Show1 (M1 C γ φ) where
shows1 c@(M1 a) =

showString "("◦ showString (conName c)
◦ showString " "

◦wrapRecord
(shows1 (conIsRecord c) a◦ showString ")")

where
wrapRecord :: ShowS→ ShowS
wrapRecord s | conIsRecord c = showString "{ "◦ s

◦ showString " }"

wrapRecord s | otherwise = s

For a selector, we print its label (as long as it is not empty), followed
by an "=" and the value. In the product, we use the Bool to decide
if we print a space (unlabeled constructors) or a comma:

instance (Show1 φ ,Selector γ)⇒ Show1 (M1 S γ φ) where
shows1 b s@(M1 a)
| null (selName s) = shows1 b a
| otherwise = showString (selName s)

◦ showString " = "◦ shows1 b a
instance (Show1 φ ,Show1 ψ)⇒ Show1 (φ × ψ) where

shows1 b (a× c) = shows1 b a
◦ showString (if b then "," else " ")
◦ shows1 b c

Finally, we provide the default:

{−# DERIVABLE Show shows showsDefault #−}
showsDefault :: (Representable0 α τ,Show1 τ)

⇒ τ χ → α → ShowS
showsDefault rep x = shows1 False (from0 x ‘asTypeOf ‘ rep)

We have shown how to use meta-information to define a generic
show function. If we additionally account for infix constructors
and operator precedence for avoiding unnecessary parentheses,
we obtain a formal specification of how show behaves on every
Haskell 98 datatype.



4. Compiler support
We now describe in detail the required compiler support for our
generic deriving mechanism.

We start by defining two predicates on types, isRep0 (φ)
and isRep1 (φ), which hold if φ can be made an instance of
Representable0 and Representable1, respectively. The statement
isRep0 (φ) holds if φ is any of the following:

1. A regular Haskell 98 datatype without context

2. An empty datatype

3. A type variable of kind ?

We also require that for every type ψ that appears as an argument
to a constructor of φ , isRep0 (ψ) holds. φ cannot use existential
quantification, type equalities or any other extensions.

The statement isRep1 (φ) holds if the following conditions both
hold:

1. isRep0 (φ)

2. φ is of kind ?→ ? or k→ ?→ ?, for any kind k

Note that isRep0 holds for all the types of Section 2.4, while isRep1
holds for List, Expr, Decl, and Var.

Furthermore, we define the predicate ground (φ) to deter-
mine whether or not a datatype has type variables. For instance,
ground ([Int ]) holds, but ground ([α ]) not. Finally, we assume the
existence of an indexed fresh variable generator fresh pj

i, which
binds pj

i to a unique fresh variable.
For the remainder of this section, we consider a user-defined

datatype

data D α1 . . .αn = Con1 {l11 :: p1
1, . . . , lo1

1 :: po1
1 }

...
| Conm {l1m :: p1

m, . . . , lom
m :: pom

m }
with n type parameters, m constructors and possibly labeled param-
eter lji of type pj

i at position j of constructor Coni.

4.1 Type representation (kind ?)
In Figure 1, we show how we generate type representations for
a datatype D satisfying isRep0 (D). We generate a number of
empty datatypes which we use in the meta-information: one for the
datatype, one for each constructor and one for each argument to a
constructor.

The type representation is a type synonym (RepD
0 ) with as many

type variables as D. It is a wrapped sum of wrapped products: the
wrapping encodes the meta-information. We wrap all arguments to
constructors, even if the constructor is not a record. Since we use
a balanced sum (resp. product) encoding, a generic function can
use the meta-information to find out when the sum (resp. product)
structure ends, which is when we reach C1 (resp. S1). Each argu-
ment is tagged with Par0 if it is one of the type variables, or Rec0
if it is anything else (type application or a concrete datatype).

4.2 Representable0 instance
The instance Representable0 RepD

0 is defined in Figure 2, as in-
troduced in Section 2. The patterns of the from0 function are the
constructors of the datatype applied to fresh variables. The same
patterns become expressions in function to0. The patterns of to0
are also the same as the expressions of from0, and they represent
the different values of a balanced sum of balanced products, prop-
erly wrapped to account for the meta-information. Note that, for
Representable0, the functions tuple and wrap do not behave dif-
ferently depending on whether we are in from0 or to0, so for these
declarations the dir argument is not needed. Similarly, the wrap

function could have been inlined. These definitions will be refined
in Section 4.4.

4.3 Type representation (kind ?→ ?)
See Figure 3 for the type representation of type constructors.
We keep the sum-of-products structure and meta-information un-
changed. At the arguments, however, we can use Par0, Par1, Rec0,
Rec1, or composition. We use Par1 for the type variable α , and
Par0 for other type variables of kind ?. A recursive occurrence of
a type containing αn is marked with Rec1. A recursive occurrence
of a type with no type variables is marked with Rec0, as there is
no variable to abstract from. Finally, for a recursive occurrence of
a type which contains something else than αn we use composition,
and recursively analyze the contained type.

4.4 Representable1 instance
The definition of the embedding-projection pair for kind ? → ?
datatypes, shown in Figure 4, reflects the more complicated type
representation. The patterns are unchanged. However, the expres-
sions in to1 need some additional unwrapping. This is encoded in
var and unwC: an application to a type variable other than αn has
been encoded as a composition, so we need to unwrap the elements
of the contained type. We use fmap for this purpose: since we re-
quire isRep1 (φ), we know that we can use fmap (see Section 3.4).
The user should always derive Functor for container types, as these
can appear to the left of a composition.

Unwrapping is dual to wrapping: we use Par1 for the type pa-
rameter αn, Rec1 for containers of αn, K1 for other type parameters
and ground types, and composition for application to types other
than αn. Considering composition, in to1 we generate only Comp1
applied to a fresh variable, as this is a pattern; the necessary un-
wrapping of the contained elements is performed in the right-hand
side expression. In from1 the contained elements are tagged prop-
erly: this is performed by wCα .

4.5 Meta-information
We generate three meta-information instances. For datatypes, we
generate

instance Datatype $D where
moduleName = mName
datatypeName = dName ,

where dName is a String with the unqualified name of datatype D
and mName is a String with the name of the module in which D is
defined.

For constructors, we generate

instance Constructor $Coni where
conName = name
{conFixity = fixity}
{conIsRecord = True} ,

where i ∈ 1..m, and name is the unqualified name of constructor
Coni. The braces around conFixity indicate that this method is
only defined if Coni is an infix constructor. In that case, fixity
is Infix assoc prio, where prio is an integer denoting the priority
of Coni, and assoc is one of LeftAssociative, RightAssociative, or
NotAssociative. These are derived from the declaration of Coni as
an infix constructor. The braces around conIsRecord indicate that
this method is only defined if Coni uses record notation.

For all i ∈ {1..m}, we generate

instance Selector $Lj
i {where selName = lji} ,

where j ∈ {1..oi}. The brackets indicate that the instance is only
given a body if Coni uses record notation. Otherwise, the default
implementation for selName is used, i.e. const "".



data $D

data $Con1
...
data $Conm

data $L1
1

...
data $Lom

m

type RepD
0 α1 . . .αn = D1 $D (∑m

i=1 (C1 $Coni (∏om
j=1 (S1 $Lj

i (arg pj
i)))))

∑
n
i=1 x | n≡ 0 = V1

| n≡ 1 = x
| otherwise = ∑

m
i=1 x + ∑

n−m
i=1 x where m = bn/2c

∏
n
i=1 x | n≡ 0 = U1

| n≡ 1 = x
| otherwise = ∏

m
i=1 x×∏

n−m
i=1 x where m = bn/2c

arg pj
i | ∃k ∈ {1..n} : pj

i ≡ αk = Par0 pj
i

| otherwise = Rec0 pj
i

Figure 1. Code generation for the type representation (kind ?)

instance Representable0 (D α1 . . .αn) (RepD
0 α1 . . .αn) where {

from0 patfrom
1 = expfrom

1 ; to0 patto
1 = expto

1 ;
...

...
from0 patfrom

m = expfrom
m ; to0 patto

m = expto
m ; }

expto
i = patfrom

i = Coni (fresh p1
i ) . . .(fresh poi

i )

expfrom
i = patto

i = M1 (inji,m (M1 (tuplei (p1
i . . .poi

i ))))

inji,m x | m≡ 0 =⊥
| m≡ 1 = x
| i 6 m′ = L1 (inji,m′ x)
| i>m′ = R1 (inji′,m−m′ x)

where m′ = bm/2c
i′ = bi/2c

tupledir
i (pj

i . . .p
oi
i ) | oi ≡ 0 = M1 U1

| oi ≡ j = M1 (wrapdir (fresh pj
i))

| otherwise = (tupledir
i (p1

i . . .pk
i ))× (tupledir

i (pk+1
i . . .pm

i ))
where k = boi /2c

wrapdir p = K1 p

Figure 2. Code generation for the Representable0 instance

type RepD
1 α1 . . .αn−1 = D1 $D (∑m

i=1 (C1 $Coni (∏om
j=1 (S1 $Lj

i (arg pj
i)))))

arg pj
i | ∃k ∈ {1..n−1} : pj

i ≡ αk = Par0 pj
i

| pj
i ≡ αn = Par1

| pj
i ≡ φ αn ∧ isRep1 (φ) = Rec1 pj

i
| pj

i ≡ φ β ∧ isRep1 (φ) ∧ ¬ ground (β ) = φ ◦ arg β

| otherwise = Rec0 pj
i

∑
m
i=1 x and ∏

n
j=1 x as in Figure 1.

Figure 3. Code generation for the type representation (kind ?→ ?)

instance Representable1 (D α1 . . .αn−1) (RepD
1 α1 . . .αn−1) where {

from1 patfrom
1 = expfrom

1 ; to1 patto
1 = expto

1 ;
...

...
from1 patfrom

m = expfrom
m ; to1 patto

m = expto
m ; }

expto
i = Coni (var p1

i ) . . .(var poi
i )

var pj
i | p

j
i ≡ φ α ∧ α 6≡ αn

∧ isRep1 (φ) = fmap unwCα (fresh pj
i)

| otherwise = fresh pj
i

patdir
i , expfrom

i , inji,m x, and tupledir
i (p1 . . .pm) as in Figure 2 (but using the new wrapdir x).

wrapdir pj
i | p

j
i ≡ αn = Par1 (fresh pj

i)
| pj

i ≡ φ αn ∧ isRep1 (φ) = Rec1 (fresh pj
i)

| ∃k ∈ {1..n} : pj
i ≡ αk = K1 (fresh pj

i)

| pj
i ≡ φ α ∧ ¬ isRep1 (φ) = K1 (fresh pj

i)
| pj

i ≡ φ α ∧ dir ≡ from = Comp1 (fmap wCα (fresh pj
i))

| otherwise = Comp1 (fresh pj
i)

unwCα | α ≡ αn = unPar1
| α ≡ φ αn ∧ isRep1 (φ) = unRec1
| α ≡ φ β ∧ ground (β ) = unRec0
| α ≡ φ β ∧ isRep1 (φ) = fmap unwCβ ◦unComp1

wCα | α ≡ αn = Par1
| ground (α) = K1
| α ≡ φ αn ∧ isRep1 (φ) = Rec1
| α ≡ φ β ∧ isRep1 (φ) = Comp1 ◦ (fmap wCβ )

Figure 4. Code generation for the Representable1 instance



4.6 Default instances
The instances of a class representing the different cases of a generic
function on representation types present somewhat more of a chal-
lenge because they refer to a specific function defined by the
generic programmer (in our running example encodeDefault). The
compiler knows which function to use due to the DEFAULT pragma
(Section 3.3).

After the default function has been determined, the only other
concern is passing the explicit type representation, encoded as a
typed ⊥.

4.6.1 Generic functions on Representable0

For each generic function f that is a method of the type class F, and
for every datatype D with type arguments α1 . . .αn and associated
representation type RepD

0 α1 . . .αn χ , the compiler generates:

instance (C . . .)⇒ F (D α1 . . .αn) where
f = fD ⊥ where

fD :: (C . . .)⇒ RepD
0 α1 . . .αn χ → β

fD = fDefault

The type β is the type of f specialized to D, and χ is a fresh
type variable. The context C is the same in the instance head and
in function fD. The exact context generated depends on the way
the user specified the deriving. If deriving F was attached to the
datatype, we generate a context F −→α1, . . . ,F

−→
αn, where −→α is the

variable α applied to enough fresh type variables to achieve full
saturation. This approach gives the correct behavior for Haskell 98
derivable classes like Show. In general, however, it is not correct:
we cannot assume that we require F αi for all i ∈ {1 . .n}: generic
children, for instance, does not require any constraints, as it is
not a recursive function. Worse even, we might require constraints
other than these, as a generic function can use other functions, for
instance.

To avoid these problems we can use the standalone deriving
extension. If we have a standalone deriving

deriving instance (C . . .)⇒ F (D α1 . . .αn)

we can simply use this context for the instance. In general, however,
the compiler should be able to infer the right context by analyzing
the context of the generic function and the structure of the datatype.

4.6.2 Generic functions on Representable1

For each generic function f that is a method of the type class F, and
for every datatype D with type arguments α1 . . .αn and associated
representation type RepD

1 α1 . . .αn, the compiler generates:

instance (C . . .)⇒ F (D α1 . . .αn−1) where
f = fD ⊥ where

fD :: (C . . .)⇒ RepD
1 α1 . . .αn→ β

fD = fDefault

The type β is the type of f specialized to D (in other words,
f :: β ). This code is almost the same as that for generic functions
on Representable0, with a small exception for handling the last
type variable (αn). The context can be copied from the standalone
deriving, if one was used, or just inferred by the compiler.

4.7 UHC specifics
We have a prototype implementation of our deriving mechanism
in UHC. Although generating the required datatypes and instances
is straightforward, we have to resolve some subtle issues. In our
implementation, the following issues arose:

Which stage of the compiler pipeline generates the datatypes and
instances? Ideally, all deriving-related code is generated as early

as possible, for example during desugaring, so later compiler stages
can type check the generated code. However, the generation needs
kind information of types and classes, which is only available af-
ter kind checking. In UHC, the datatypes and instances are directly
generated as intermediate Core, directed by kind information, and
only the derived instances are intertwined with type checking and
context reduction because of the use of the default deriving func-
tions.

Use of fmap. The generation of embedding-projection pairs for
types with composition requires fmap, which in turn requires the
context reduction machinery to resolve overloading. This compli-
cates the interaction with the compiler pipeline, because the gen-
eration becomes not only kind-directed, but also context reduction
proof-directed. However, all occurrences of fmap are applied to the
identity function id, because wrappers like Par1 are defined as new-
types. In UHC, the use of context reduction is avoided assuming the
equality fmap id ≡ id.

Code size. Some quick measurements show a 10% increase in
the size of the generated code. Although language pragmas like
GenericDeriving and NoGenericDeriving could selectively switch
this feature on or off, this would defeat the purpose of generic-
ity. Once turned off for a datatype, no Representables are gener-
ated, and no generic instances can be defined anymore. Instead,
later transformations should prune unused code. These issues need
further investigation.

Bootstrapping. As soon as a user defines a datatype, code gen-
eration generates the supporting datatypes. Such datatypes (e.g.
$Con1) and the datatypes used by supporting datatypes (e.g. Bool,
used in the return type of conIsRecord) are mutually dependent,
which is detected by binding group analysis. Each binding group
type analysis must deal with mutually dependent datatypes. This
also means that the supporting definitions must be available in the
first module that contains a datatype.

Interaction with desugaring. Currently, deriving clauses are just
syntactic sugar for standalone deriving. After desugaring, we can-
not decide to generate a Representable0 or a Representable1 in-
stance because kind information is not available. Automatically
generating the correct context for such an instance cannot be done
either. To work around this limitation, we only accept deriving
clauses for generic classes that use Representable0. Derivings for
Representable1 classes have to use standalone deriving syntax,
since then we no longer need to infer a context, and can let the
programmer provide the required context.

5. Alternatives
We have described how to implement a deriving mechanism that
can be used to specify many datatype-generic functions in Haskell.
There are other alternatives, of varying complexity and type-safety.

5.1 Pre-processors
The simplest, most powerful and least type safe alternative to
our approach is to implement deriving by pre-processing the
source file(s), analyzing the datatypes definitions and generating
the required instances with a tool such as DrIFT (Winstanley and
Meacham 2008). This requires no work from the compiler writer,
but does not simplify the task of adding new derivable classes, as
programming by generating strings is not very convenient.

Staged meta-programming lies in between a pre-processor and
an embedded datatype-generic representation. GHC supports Tem-
plate Haskell (Sheard and Peyton Jones 2002), which has become
a standard tool for obtaining reflection in Haskell. While Template
Haskell provides possibly more flexibility than the purely library-
based approach we describe, it imposes a significant hurdle on the



compiler writer, who does not only have to implement a language
for staged programming (if one does not yet exist for the com-
piler, like in UHC), but also keep this complex component up-to-
date with the rest of the compiler, as it evolves. As an example,
Template Haskell support for GADTs and type families only ar-
rived much later than the features themselves. Also, for the deriv-
able class writer, using Template Haskell is more cumbersome and
error-prone than writing a datatype-generic definition in Haskell it-
self.

For these reasons we think that our library-based approach,
while having some limitations, has a good balance of expressive
power, type safety, and the amount of implementation work re-
quired.

5.2 Generic programming libraries
Another design choice we made was in the specific library approach
to use. We have decided not to use any of the existing libraries but
instead to develop yet another one. However, our library is merely a
variant of existing libraries, from which it borrows many ideas. We
see our representation as a mixture between regular (Van Noort
et al. 2008) and instant-generics (Chakravarty et al. 2009). We
share the functorial view with regular; however, we abstract from
a single type parameter, and not from the recursive occurrence. Our
library can also be seen as instant-generics extended with a
single type parameter. However, having one parameter allows us
to deal with composition effectively, and we do not duplicate the
representation for types without parameters.

Since we wanted to avoid using GADTs, and we wanted an
extensible approach, we had to exclude most of the other generic
programming libraries. The only possible choice would have been
EMGM (Oliveira et al. 2007), which supports type parameters, is
modular and does not require fancy extensions. However, EMGM
duplicates the representation for higher arities, and encodes the
representation of a type at the value level. We prefer encoding the
representation only at the type level, as this has proven to allow for
type-indexed datatypes (see Section 7.2).

6. Related work
The generic programming library we present shares many aspects
with regular (Van Noort et al. 2008) and instant-generics
(Chakravarty et al. 2009). Clean (Alimarine and Plasmeijer 2001)
has also integrated generic programming directly in the language.
We think our approach is more lightweight: we express our generic
functions almost entirely in Haskell and require only one small
syntactic extension. On the other hand, the approach taken in Clean
allows defining generic functions with polykinded types (Hinze
2002), which means that the function bimap (see Section 2.1), for
instance, can be defined. Not all Clean datatypes are supported:
quantified types, for example, cannot derive generic functions. Our
approach does not support all features of Haskell datatypes, but
most common datatypes and generic functions are supported.

An extension for derivable type classes similar to ours has
been developed by Hinze and Peyton Jones (2001) in GHC. As
in Clean, this extension requires special syntax for defining generic
functions, which makes it harder to implement and maintain. In
contrast, generic functions written in our approach are portable
across different compilers. Furthermore, Hinze and Peyton Jones’s
approach cannot express functions such as fmap, as their type
representation does not abstract over type variables.

Rodriguez Yakushev et al. (2008) give criteria for comparing
generic programming libraries. These criteria consider the library’s
use of types, and its expressiveness and usability. Regarding types,
our library scores very good: we can represent regular, higher-
kinded, nested, and mutually recursive datatypes. We can also ex-
press subuniverses: generic functions are only applicable to types

that derive the corresponding class. We only miss the ability to
represent nested higher-kinded datatypes, as our representation ab-
stracts only over a parameter of kind ?.

Regarding expressiveness, our library scores good for most cri-
teria: we can abstract over type constructors, give ad-hoc definitions
for datatypes, our approach is extensible, supports multiple generic
arguments, represents the constructor names and can express con-
sumers, transformers, and producers. We cannot express gmapQ in
our approach, but our generic functions are still first-class: we can
call generic map with generic show as argument, for instance. Ad-
hoc definitions for constructors would be of the form:

instance Show Exp where
shows (Plus e1 e2) = shows e1 ◦ showString "+"◦ shows e2

shows x = showsDefault (⊥ :: RepExp
0 χ) x

However, in our current implementation, RepExp
0 is an internal type

synonym not exposed to the user. Exposing it to the user would re-
quire a naming convention. If UHC supported type families (Schri-
jvers et al. 2008), Rep0 could be a visible type family, which would
solve our problem for ad-hoc definitions of constructors. It would
also remove the need for using asTypeOf in Section 2.3.

Regarding usability, our approach supports separate compila-
tion, is highly portable, has automatic generation of its two rep-
resentations, requires minimal work to instantiate and define a
generic function, is implemented in a compiler and is easy to use.
We have not yet benchmarked our library in UHC. In GHC, we
believe it will be as efficient as instant-generics and regular.

7. Future work
Our solution is applicable to a wide range of datatypes and can
express many generic functions. However, some limitations still
remain, and many improvements are possible. In this section we
outline some possible directions for future research.

7.1 Supported datatypes
Our examples in Section 2 show that we can represent many com-
mon forms of datatypes. We believe that we can represent all of the
Haskell 98 standard datatypes in Representable0, except for con-
strained datatypes. We could easily support constrained datatypes
by propagating the constraints to the generic instances.

Regarding Representable1, we can represent many, but not all
datatypes. Consider a nested datatype for representing balanced
trees:

data Perfect ρ = Node ρ | Perfect (ρ,ρ)

We cannot give a representation of kind ?→ ? for Perfect, since
for the Perfect constructor we would need something like Perfect ◦
Rec1 ((,) ρ). However, the type variable ρ is no longer available,
because we abstract from it. This limitation is caused by the fact
that we abstract over a single type parameter. The approach taken
by Hesselink (2009) is more general and fits closely with our
approach, but it is not clear if it is feasible without advanced
language extensions.

Note that for this particular case we could use a datatype which
pairs elements of a single type:

data Pair ρ = Pair ρ ρ

The representation for the Perfect constructor could then be Perfect ◦
Rec1 Pair.

7.2 Type-indexed datatypes
Some generic functionality, like the zipper (Huet 1997) and generic
rewriting (Van Noort et al. 2008), require not only type-indexed
functions but also type-indexed datatypes: types that depend on the



structure of other types (Hinze et al. 2002). We plan to investigate
how type-indexed datatypes can be integrated easily in our generic
deriving mechanism, while still avoiding advanced language exten-
sions.

7.3 Generic functions
The representation types we propose limit the kind of generic func-
tions we can define. We can express the Haskell 98 standard deriv-
able classes Eq, Ord, Enum, Bounded, Show, and Read, even lift-
ing some of the restrictions imposed on the Enum and Bounded
instances. All of these are expressible for Representable0 types.
Using Representable1, we can implement Functor, as the param-
eter of the Functor class is of kind ? → ?. The same holds for
Foldable and Traversable. For Typeable we can express Typeable0
and Typeable1.

On the other hand, the Data class has very complex generic
functions which cannot be expressed with our representation. Func-
tion gfoldl, for instance, requires access to the original datatype
constructor, something we cannot do with the current representa-
tion. In the future we plan to explore if and how we can change our
representation to allow us to express more generic functions.

7.4 Efficiency
The instances derived in our approach are not specialized for a
datatype and may therefore incur an unacceptable performance
penalty. However, our recent research (Magalhães et al. 2010) indi-
cates that simple inlining and symbolic evaluation, present in some
form in every optimizing compiler, suffice in most cases to opti-
mize away all overhead from generic representations. We plan to
investigate how these optimizations can be expressed and automat-
ically applied without any user intervention in UHC.

7.5 Implementation in GHC
Our approach is designed to be as portable as possible. Therefore,
we would like to implement it in other compilers, most impor-
tantly in GHC. As a first step, we believe we can easily implement
most of our generic deriving mechanism in GHC using Template
Haskell. The code for the generic functions is kept intact: only the
DERIVABLE pragma needs a different syntax. For the user code, a
code splice would trigger the generation of generic representations
and function instances.

8. Conclusion
We have shown how datatype-generic programming can be better
integrated in Haskell by revisiting the deriving mechanism. All
Haskell 98 derivable type classes can be expressed as generic func-
tions in our library, with the advantage of becoming easily read-
able and portable. Additionally, many other type classes, such as
Functor and Typeable, can be declared derivable. Our extension re-
quires little extra syntax, so it is easy to implement. Adding new
generic derivings can be done by generic programmers in regular
Haskell; previously, this would be the compiler developer’s task,
and would be done using code generation, which is more error-
prone and verbose.

We have implemented our solution in UHC and invite everyone
to derive instances for their favorite datatypes or even write their
own derivings. We hope our work paves the future for a redefinition
of the behavior of derived instances for Haskell Prime (Wallace
et al. 2007).
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