

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

A Generic Deriving Mechanism for Haskell

José Pedro Magalhães Atze Dijkstra, Johan Jeuring, Andres Löh

Dept. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands Web pages: http://www.cs.uu.nl/wiki/Center

September 30, 2010

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

Universiteit Utrecht

Overview

- Haskell has a number of (built-in) type classes that can automatically be derived: Bounded, Enum, Eq, Ord, Read, and Show
- We present a mechanism that lets you define these classes and your own in Haskell such that they can be derived automatically
- Similar to "Derivable Type Classes", but better integrated into Haskell
- Implemented in the Utrecht Haskell Compiler
- We describe formally how it can be implemented in other compilers

Universiteit Utrecht

Features

We can:

- Handle meta-information such as constructor names and field labels
- Derive all the Haskell 98 classes
- ► Derive most of the classes that GHC can derive, including Typeable and classes of kind * → * such as Functor

Universiteit Utrecht

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

Universiteit Utrecht

Using generic functions

If a class is generic, it can be used in a **deriving** construct. Assuming a type class

data $Bit = 0 \mid 1$ class Encode α where encode :: $\alpha \rightarrow [Bit]$

The end user can write

data Exp = Const Int | Plus Exp Exp
 deriving (Show, Encode)

and then use

test :: [Bit] test = encode (Plus (Const 1) (Const 2))

Universiteit Utrecht

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

Universiteit Utrecht

Basic idea

- For each datatype, there is an equivalent internal representation.
- All the concepts contained in the data construct (application, abstraction, choice, sequence, recursion) are captured by a limited set of representation types.
- The compiler generates an internal representation for every datatype, together with conversion functions and derived instances

Universiteit Utrecht

Universiteit Utrecht

data Exp = Const Int | Plus Exp Exptype $Rep_0^{Exp} = (Int) + (Exp \times Exp))$

Note that the representation is shallow – recursive calls are to $E \times p$, not $Rep_0^{E \times p}$.

Most of the representation is meta-information about:

Universiteit Utrecht

data Exp = Const Int | Plus Exp Exptype $Rep_0^{Exp} =$ D_1 $Exp ((Int) + (Exp \times Exp))$

Note that the representation is shallow – recursive calls are to Exp, not Rep_0^{Exp} .

Most of the representation is meta-information about:

the datatype itself,

Universiteit Utrecht

 $\begin{array}{l} \textbf{data} \; \mathsf{Exp} = \mathsf{Const} \; \mathsf{Int} \; | \; \mathsf{Plus} \; \mathsf{Exp} \; \mathsf{Exp} \\ \textbf{type} \; \mathsf{Rep}_0^{\mathsf{Exp}} = \\ \mathsf{D}_1 \; \$ \mathsf{Exp} \; \left(\begin{array}{c} \mathsf{C}_1 \; \$ \mathsf{Const}_{\mathsf{Exp}} \; \left(\begin{array}{c} \mathsf{Int} \right) \\ + \; \mathsf{C}_1 \; \$ \mathsf{Plus}_{\mathsf{Exp}} \; \left(\begin{array}{c} \mathsf{Exp} \times & \mathsf{Exp} \right) \end{array} \right) \\ \end{array}$

Note that the representation is shallow – recursive calls are to Exp, not Rep_0^{Exp} .

Most of the representation is meta-information about:

- the datatype itself,
- the constructors,

Universiteit Utrecht

Note that the representation is shallow – recursive calls are to Exp, not $\operatorname{Rep}_{0}^{\operatorname{Exp}}$.

Most of the representation is meta-information about:

- the datatype itself,
- the constructors,
- where recursive calls take place.

Universiteit Utrecht

Lifting

Our approach can handle type classes with parameters of both

kind * such as Encode and Show;

• kind $\star \rightarrow \star$ such as Functor.

We therefore represent all datatypes at kind $\star \rightarrow \star$.

Types of kind \star get a dummy parameter in their representation.

Universiteit Utrecht

Representation types

The void type V_1 is for types without constructors. The unit type U_1 is for constructors without fields. Sums represent choice between constructors. Products represent sequencing of fields.

Universiteit Utrecht

Meta-information

data K₁ $\iota \gamma \quad \rho = K_1 \gamma$ data M₁ $\iota \mu \phi \rho = M_1 (\phi \rho)$

These types record additional information, such as names and fixity, for instance. They are instantiated as follows:

data D	datatypes	type $D_1 = M_1 D_1$
data C	constructors	type $C_1 = M_1 C$
data S	record selectors	$\textbf{type} \; S_1 = M_1 \; S$
data R	recursive calls	type $Rec_0 = K_1 R$
data P	parameters	type $Par_0 = K_1 P$

We group five combinators into two because we often do not care about all the different types of meta-information.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

Example: meta-information for expressions

UHC automatically generates the following for Exp:

data \$Exp
data \$Const_{Exp}
data \$Const_{Exp}
data \$Plus_{Exp}
instance Datatype \$Exp where
 moduleName _ = "ModuleName"
 datatypeName _ = "Exp"
instance Constructor \$Const_{Exp} where conName _ = "Const"
instance Constructor \$Plus_{Exp} where conName _ = "Plus"

The classes Datatype and Constructor can hold more information if desired.

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Conversion

We use a type class to mediate between values and representations:

class Representable₀ $\alpha \tau$ where from₀ :: $\alpha \rightarrow \tau \chi$ to₀ :: $\tau \chi \rightarrow \alpha$

Universiteit Utrecht

Conversion

We use a type class to mediate between values and representations:

class Representable₀ $\alpha \tau$ where from₀ :: $\alpha \rightarrow \tau \chi$ to₀ :: $\tau \chi \rightarrow \alpha$

Instance for Exp (automatically generated by UHC):

 $\begin{array}{ll} \mbox{instance Representable}_0 \ \mbox{Exp Rep}_0^{\mbox{Exp}} \ \mbox{where} \\ \ \mbox{from}_0 \ (\mbox{Const} \ n) \ = \ \mbox{M}_1 \ (\mbox{L}_1 \ (\mbox{M}_1 \ (\mbox{K}_1 \ n))) \\ \ \mbox{from}_0 \ (\mbox{Plus e } e') \ = \ \mbox{M}_1 \ (\mbox{R}_1 \ (\mbox{M}_1 \ (\mbox{K}_1 \ e'))) \\ \ \mbox{to}_0 \ (\mbox{M}_1 \ (\mbox{L}_1 \ (\mbox{M}_1 \ (\mbox{K}_1 \ n)))) \ = \ \mbox{Const} \ n \\ \ \mbox{to}_0 \ (\mbox{M}_1 \ (\mbox{R}_1 \ (\mbox{M}_1 \ (\mbox{K}_1 \ e')))) \ = \ \mbox{Plus e } e' \end{array}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

A note on extensions

The Representable₀ class could use a functional dependency:

```
class Representable<sub>0</sub> \alpha \tau \mid \alpha \rightarrow \tau where . . .
```

Alternatively, τ could be encoded as an associated type:

class Representable₀ α where type Rep₀ $\alpha :: \star \to \star$ from₀ :: $\alpha \to \text{Rep}_0 \alpha \chi$ to₀ :: Rep₀ $\alpha \chi \to \alpha$

But we want to stay inside Haskell98 as much as possible. We only require support for multi-parameter type classes.

Universiteit Utrecht

Compiler support

For each datatype, the compiler generates the following:

- Meta-information, i.e. datatypes and class instances.
- Representation type synonym(s).
- Representable₀ and/or Representable₁ instance.

For each **deriving** construct, the compiler looks for an appropriate DERIVABLE pragma (specified by the library writer) and generates a default instance.

Universiteit Utrecht

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

Universiteit Utrecht

Generic function definitions

The library writer defines generic (derivable) functions. We use two classes: one for the base types (kind \star):

class Encode α where encode :: $\alpha \rightarrow [Bit]$

and one for the representation types (kind $\star \rightarrow \star$):

class Encode₁ ϕ where encode₁ :: $\phi \chi \rightarrow [Bit]$

Universiteit Utrecht

Simple cases

The generic cases are defined as instances of Encode₁:

instance $Encode_1 V_1$ where $encode_1 - = []$ instance $Encode_1 U_1$ where $encode_1 - = []$ instance $(Encode_1 \phi) \Rightarrow Encode_1 (M_1 \iota \gamma \phi)$ where $encode_1 (M_1 a) = encode_1 a$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲□▶▲□▶▲□▶ □ のへで

Sums and products

instance $(Encode_1 \phi, Encode_1 \psi) \Rightarrow Encode_1 (\phi + \psi)$ where encode₁ $(L_1 a) = 0$: encode₁ a encode₁ $(R_1 a) = 1$: encode₁ a

instance (Encode₁ ϕ , Encode₁ ψ) \Rightarrow Encode₁ ($\phi \times \psi$) where encode₁ ($a \times b$) = encode₁ a + encode₁ b

Universiteit Utrecht

Constants and base types

For constants, we rely on Encode:

instance (Encode α) \Rightarrow Encode₁ (K₁ $\iota \alpha$) where encode₁ (K₁ a) = encode a

In this way we close the recursive loop: if α is a representable type, encode will call from and then encode₁ again.

For base types, we need to provide ad-hoc instances:

instance Encode Int **where** encode = ... **instance** Encode Char **where** encode = ...

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

Default generic instance

Every generic function needs a default case:

 $\begin{array}{l} \mathsf{encode}_{\mathsf{Default}} \ :: \ (\mathsf{Representable}_0 \ \alpha \ \tau, \mathsf{Encode}_1 \ \tau) \\ \Rightarrow \tau \ \chi \to \alpha \to [\mathsf{Bit}] \\ \mathsf{encode}_{\mathsf{Default}} \ \mathsf{rep} \ \mathsf{x} = \mathsf{encode}_1 \ ((\mathsf{from}_0 \ \mathsf{x}) \ \mathsf{`asTypeOf' rep}) \end{array}$

 $\{-\# \text{ DERIVABLE Encode encode encode}_{\text{Default }}\#-\}$

Universiteit Utrecht

Default generic instance

Every generic function needs a default case:

 $\begin{array}{l} \mathsf{encode}_{\mathsf{Default}} \ :: \ (\mathsf{Representable}_0 \ \alpha \ \tau, \mathsf{Encode}_1 \ \tau) \\ \Rightarrow \tau \ \chi \to \alpha \to [\mathsf{Bit}] \\ \mathsf{encode}_{\mathsf{Default}} \ \mathsf{rep} \ \mathsf{x} = \mathsf{encode}_1 \ ((\mathsf{from}_0 \ \mathsf{x}) \ \mathsf{`asTypeOf' rep}) \end{array}$

 $\{-\# \text{ DERIVABLE Encode encode encode}_{\text{Default }}\#-\}$ We are done:

data Exp = Const Int | Plus Exp Exp deriving Encode

will cause the generation of

instance Encode Exp **where** encode = encode_{Default} (\perp :: Rep₀^{Exp} χ)

Universiteit Utrecht

Back to the internals: kind $\star \rightarrow \star$ types

For type constructors (kind $\star \to \star$), we use a few more representation types:

newtype Par1 $\rho = Par_1$ ρ newtype Rec1 ϕ $\rho = Rec_1$ $(\phi \rho)$ newtype (\circ) $\phi \ \psi \ \rho = Comp_1 \ (\phi \ (\psi \ \rho))$

We use Par_1 to store the parameter, Rec_1 to encode recursive occurrences of type constructors, and \circ for type composition (eg. lists of trees).

Universiteit Utrecht

Example: representing lists I

data List $\rho = \text{Nil} \mid \text{Cons } \rho \text{ (List } \rho)$ deriving (Show, Encode, Functor)

The compiler generates instance of $Representable_0$ for kind \star functions:

 $\begin{array}{l} \textbf{type} \; \mathsf{Rep}_0^{\mathsf{List}} \; \rho = \\ \mathsf{D}_1 \; \$ \mathsf{List} & (\; \mathsf{C}_1 \; \$ \mathsf{Nil}_{\mathsf{List}} \; \; \mathsf{U}_1 \\ & + \; \mathsf{C}_1 \; \$ \mathsf{Cons}_{\mathsf{List}} \; (\mathsf{Par}_0 \; \rho \times \mathsf{Rec}_0 \; (\mathsf{List} \; \rho))) \end{array}$

 $\begin{array}{ll} \mbox{instance Representable}_0 \ (List \ \rho) \ (Rep_0^{List} \ \rho) \ \mbox{where} \\ from_0 \ Nil & = M_1 \ (L_1 \ (M_1 \ U_1)) \\ from_0 \ (Cons \ h \ t) = M_1 \ (R_1 \ (M_1 \ (K_1 \ h \times K_1 \ t))) \\ to_0 \ (M_1 \ (L_1 \ (M_1 \ U_1))) & = Nil \\ to_0 \ (M_1 \ (R_1 \ (M_1 \ (K_1 \ h \times K_1 \ t)))) = Cons \ h \ t \end{array}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

▲□▶▲□▶▲□▶▲□▶ □ のへで

Example: representing lists II

 $\begin{array}{l} \textbf{type} \ \mathsf{Rep}_0^{\mathsf{List}} \ \rho = \\ \mathsf{D}_1 \ \$ \mathsf{List} & (\ \mathsf{C}_1 \ \$ \mathsf{Nil}_{\mathsf{List}} \quad \mathsf{U}_1 \\ & + \ \mathsf{C}_1 \ \$ \mathsf{Cons}_{\mathsf{List}} \ (\mathsf{Par}_0 \ \rho \times \mathsf{Rec}_0 \ (\mathsf{List} \ \rho))) \end{array}$

And an instance of Representable₁ for kind $\star \rightarrow \star$ functions:

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Back to the library writer: generic map I

We show how to define Functor generically as an example of a kind $\star \rightarrow \star$ function. For consistency, we again use two type classes:

class Functor ϕ where fmap :: $(\rho \rightarrow \alpha) \rightarrow \phi \ \rho \rightarrow \phi \ \alpha$ class Functor₁ ϕ where fmap₁ :: $(\rho \rightarrow \alpha) \rightarrow \phi \ \rho \rightarrow \phi \ \alpha$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

*ロ * * 母 * * 目 * * 目 * * の < や

Generic map II

The most interesting instance is the one for parameters:

instance $Functor_1 Par_1$ where fmap₁ f (Par₁ a) = Par₁ (f a)

Recursion and composition rely on Functor:

instance (Functor ϕ) \Rightarrow Functor₁ (Rec₁ ϕ) where fmap₁ f (Rec₁ a) = Rec₁ (fmap f a) instance (Functor ϕ , Functor₁ ψ) \Rightarrow Functor₁ ($\phi \circ \psi$) where fmap₁ f (Comp₁ x) = Comp₁ (fmap (fmap₁ f) x)

Universiteit Utrecht

Generic map III

The default case applies the conversion functions:

$$\begin{split} \{-\# \text{ DERIVABLE Functor fmap fmap}_{\mathsf{Default}} \ \#-\} \\ \mathsf{fmap}_{\mathsf{Default}} \ :: \ (\mathsf{Representable}_1 \ \phi \ \tau, \mathsf{Functor}_1 \ \tau) \\ & \Rightarrow \tau \ \rho \to (\rho \to \alpha) \to \phi \ \rho \to \phi \ \alpha \\ \mathsf{fmap}_{\mathsf{Default}} \ \mathsf{rep} \ \mathsf{f} \ \mathsf{x} = \mathsf{to}_1 \ (\mathsf{fmap}_1 \ \mathsf{f} \ (\mathsf{from}_1 \ \mathsf{x} \ \mathsf{`asTypeOf' rep})) \end{split}$$

Universiteit Utrecht

Generic map III

The default case applies the conversion functions:

$$\begin{split} \{-\# \text{ DERIVABLE Functor fmap fmap}_{\mathsf{Default}} \ \#- \} \\ \mathsf{fmap}_{\mathsf{Default}} \ :: \ (\mathsf{Representable}_1 \ \phi \ \tau, \mathsf{Functor}_1 \ \tau) \\ & \Rightarrow \tau \ \rho \to (\rho \to \alpha) \to \phi \ \rho \to \phi \ \alpha \\ \mathsf{fmap}_{\mathsf{Default}} \ \mathsf{rep} \ \mathsf{f} \ \mathsf{x} = \mathsf{to}_1 \ (\mathsf{fmap}_1 \ \mathsf{f} \ (\mathsf{from}_1 \ \mathsf{x} \ \mathsf{`asTypeOf' rep})) \end{split}$$

Now the compiler can derive Functor for List:

 $\begin{array}{l} \text{instance Functor List where} \\ \text{fmap} = \text{fmap}_{\text{List}} \; (\bot :: \operatorname{Rep}_1^{\text{List}} \; \rho) \; \text{where} \\ \text{fmap}_{\text{List}} :: \operatorname{Rep}_1^{\text{List}} \; \rho \to (\rho \to \alpha) \to \text{List} \; \rho \to \text{List} \; \alpha \\ \text{fmap}_{\text{List}} = \text{fmap}_{\text{Default}} \end{array}$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

< □ > < 同 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

Universiteit Utrecht

Conclusion

- The deriving mechanism does not have to be "magic": it can be explained in Haskell.
- Derivable functions become accessible and portable.
- We provide an implementation in UHC and detailed information on how to implement it for other compilers.
- We hope that the behavior of derived instances can be redefined in Haskell Prime, perhaps along the lines of our work.

Universiteit Utrecht