
[Faculty of Science
Information and Computing Sciences]

A Generic Deriving Mechanism for Haskell
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Overview

I Haskell has a number of (built-in) type classes that can
automatically be derived: Bounded, Enum, Eq, Ord, Read,
and Show

I We present a mechanism that lets you define these classes
and your own in Haskell such that they can be derived
automatically

I Similar to “Derivable Type Classes”, but better integrated
into Haskell

I Implemented in the Utrecht Haskell Compiler

I We describe formally how it can be implemented in other
compilers
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Features

We can:

I Handle meta-information such as constructor names and
field labels

I Derive all the Haskell 98 classes

I Derive most of the classes that GHC can derive, including
Typeable and classes of kind ?→ ? such as Functor
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Using generic functions

If a class is generic, it can be used in a deriving construct.
Assuming a type class

data Bit = 0 | 1

class Encode α where
encode :: α→ [Bit ]

The end user can write

data Exp = Const Int | Plus Exp Exp
deriving (Show,Encode)

and then use

test :: [Bit]
test = encode (Plus (Const 1) (Const 2))
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Basic idea

I For each datatype, there is an equivalent internal
representation.

I All the concepts contained in the data construct
(application, abstraction, choice, sequence, recursion) are
captured by a limited set of representation types.

I The compiler generates an internal representation for every
datatype, together with conversion functions and derived
instances
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Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp ( C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.
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Lifting

Our approach can handle type classes with parameters of both

I kind ? such as Encode and Show;

I kind ?→ ? such as Functor.

We therefore represent all datatypes at kind ?→ ?.

Types of kind ? get a dummy parameter in their representation.
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Representation types

data V1 ρ

data U1 ρ = U1

data (+) φ ψ ρ = L1 (φ ρ) | R1 (ψ ρ)

data (×) φ ψ ρ = φ ρ× ψ ρ

The void type V1 is for types without constructors.

The unit type U1 is for constructors without fields.

Sums represent choice between constructors.

Products represent sequencing of fields.
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Meta-information

data K1 ι γ ρ = K1 γ

data M1 ι µ φ ρ = M1 (φ ρ)

These types record additional information, such as names and
fixity, for instance. They are instantiated as follows:

data D -- datatypes
data C -- constructors
data S -- record selectors

data R -- recursive calls
data P -- parameters

type D1 = M1 D
type C1 = M1 C
type S1 = M1 S

type Rec0 = K1 R
type Par0 = K1 P

We group five combinators into two because we often do not
care about all the different types of meta-information.
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Example: meta-information for expressions

UHC automatically generates the following for Exp:

data $Exp
data $ConstExp
data $PlusExp

instance Datatype $Exp where
moduleName = "ModuleName"

datatypeName = "Exp"

instance Constructor $ConstExp where conName = "Const"

instance Constructor $PlusExp where conName = "Plus"

The classes Datatype and Constructor can hold more
information if desired.
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Conversion

We use a type class to mediate between values and
representations:

class Representable0 α τ where
from0 :: α→ τ χ
to0 :: τ χ→ α

Instance for Exp (automatically generated by UHC):

instance Representable0 Exp RepExp
0 where

from0 (Const n) = M1 (L1 (M1 (K1 n)))
from0 (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))

to0 (M1 (L1 (M1 (K1 n)))) = Const n
to0 (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′
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A note on extensions

The Representable0 class could use a functional dependency:

class Representable0 α τ | α→ τ where . . .

Alternatively, τ could be encoded as an associated type:

class Representable0 α where
type Rep0 α :: ?→ ?
from0 :: α→ Rep0 α χ
to0 :: Rep0 α χ→ α

But we want to stay inside Haskell98 as much as possible. We
only require support for multi-parameter type classes.
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Compiler support

For each datatype, the compiler generates the following:

I Meta-information, i.e. datatypes and class instances.

I Representation type synonym(s).

I Representable0 and/or Representable1 instance.

For each deriving construct, the compiler looks for an
appropriate DERIVABLE pragma (specified by the library writer)
and generates a default instance.
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Generic function definitions

The library writer defines generic (derivable) functions.

We use two classes: one for the base types (kind ?):

class Encode α where
encode :: α→ [Bit ]

and one for the representation types (kind ?→ ?):

class Encode1 φ where
encode1 :: φ χ→ [Bit]
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Simple cases

The generic cases are defined as instances of Encode1:

instance Encode1 V1 where
encode1 = [ ]

instance Encode1 U1 where
encode1 = [ ]

instance (Encode1 φ)⇒ Encode1 (M1 ι γ φ) where
encode1 (M1 a) = encode1 a
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Sums and products

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ+ ψ) where
encode1 (L1 a) = 0 : encode1 a
encode1 (R1 a) = 1 : encode1 a

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ× ψ) where
encode1 (a× b) = encode1 a ++ encode1 b
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Constants and base types

For constants, we rely on Encode:

instance (Encode α)⇒ Encode1 (K1 ι α) where
encode1 (K1 a) = encode a

In this way we close the recursive loop: if α is a representable
type, encode will call from and then encode1 again.

For base types, we need to provide ad-hoc instances:

instance Encode Int where encode = . . .
instance Encode Char where encode = . . .
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Default generic instance

Every generic function needs a default case:

encodeDefault :: (Representable0 α τ,Encode1 τ)
⇒ τ χ→ α→ [Bit]

encodeDefault rep x = encode1 ((from0 x) ‘asTypeOf‘ rep)

{−# DERIVABLE Encode encode encodeDefault #−}

We are done:

data Exp = Const Int | Plus Exp Exp deriving Encode

will cause the generation of

instance Encode Exp where

encode = encodeDefault (⊥ :: RepExp
0 χ)
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Back to the internals: kind ?→ ? types

For type constructors (kind ?→ ?), we use a few more
representation types:

newtype Par1 ρ = Par1 ρ

newtype Rec1 φ ρ = Rec1 (φ ρ)

newtype (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

We use Par1 to store the parameter, Rec1 to encode recursive
occurrences of type constructors, and ◦ for type composition
(eg. lists of trees).
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Example: representing lists I

data List ρ = Nil | Cons ρ (List ρ)
deriving (Show,Encode,Functor)

The compiler generates instance of Representable0 for kind ?
functions:

type RepList
0 ρ =

D1 $List ( C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

instance Representable0 (List ρ) (RepList
0 ρ) where

from0 Nil = M1 (L1 (M1 U1))
from0 (Cons h t) = M1 (R1 (M1 (K1 h× K1 t)))

to0 (M1 (L1 (M1 U1))) = Nil
to0 (M1 (R1 (M1 (K1 h× K1 t)))) = Cons h t
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Example: representing lists II

type RepList
0 ρ =

D1 $List ( C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

And an instance of Representable1 for kind ?→ ? functions:

type RepList
1 = D1 $List ( C1 $NilList U1

+ C1 $ConsList (Par1 × Rec1 List))

instance Representable1 List RepList
1 where

from1 Nil = M1 (L1 (M1 U1))
from1 (Cons h t) = M1 (R1 (M1 (Par1 h× Rec1 t)))

to1 (M1 (L1 (M1 U1))) = Nil
to1 (M1 (R1 (M1 (Par1 h× Rec1 t)))) = Cons h t
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Back to the library writer: generic map I

We show how to define Functor generically as an example of a
kind ?→ ? function. For consistency, we again use two type
classes:

class Functor φ where
fmap :: (ρ→ α)→ φ ρ→ φ α

class Functor1 φ where
fmap1 :: (ρ→ α)→ φ ρ→ φ α
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Generic map II

The most interesting instance is the one for parameters:

instance Functor1 Par1 where
fmap1 f (Par1 a) = Par1 (f a)

Recursion and composition rely on Functor:

instance (Functor φ)⇒ Functor1 (Rec1 φ) where
fmap1 f (Rec1 a) = Rec1 (fmap f a)

instance (Functor φ,Functor1 ψ)⇒ Functor1 (φ ◦ ψ) where
fmap1 f (Comp1 x) = Comp1 (fmap (fmap1 f) x)
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Generic map III

The default case applies the conversion functions:

{−# DERIVABLE Functor fmap fmapDefault #−}
fmapDefault :: (Representable1 φ τ,Functor1 τ)

⇒ τ ρ→ (ρ→ α)→ φ ρ→ φ α
fmapDefault rep f x = to1 (fmap1 f (from1 x ‘asTypeOf‘ rep))

Now the compiler can derive Functor for List:

instance Functor List where

fmap = fmapList (⊥ :: RepList
1 ρ) where

fmapList :: RepList
1 ρ→ (ρ→ α)→ List ρ→ List α

fmapList = fmapDefault
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Conclusion

I The deriving mechanism does not have to be “magic”: it
can be explained in Haskell.

I Derivable functions become accessible and portable.

I We provide an implementation in UHC and detailed
information on how to implement it for other compilers.

I We hope that the behavior of derived instances can be
redefined in Haskell Prime, perhaps along the lines of our
work.
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