
[Faculty of Science
Information and Computing Sciences]

A Generic Deriving Mechanism for Haskell

José Pedro Magalhães
Atze Dijkstra, Johan Jeuring, Andres Löh

Dept. of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
Web pages: http://www.cs.uu.nl/wiki/Center

September 30, 2010

http://www.cs.uu.nl/wiki/Center

[Faculty of Science
Information and Computing Sciences]

2

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

[Faculty of Science
Information and Computing Sciences]

3

Overview

I Haskell has a number of (built-in) type classes that can
automatically be derived: Bounded, Enum, Eq, Ord, Read,
and Show

I We present a mechanism that lets you define these classes
and your own in Haskell such that they can be derived
automatically

I Similar to “Derivable Type Classes”, but better integrated
into Haskell

I Implemented in the Utrecht Haskell Compiler

I We describe formally how it can be implemented in other
compilers

[Faculty of Science
Information and Computing Sciences]

4

Features

We can:

I Handle meta-information such as constructor names and
field labels

I Derive all the Haskell 98 classes

I Derive most of the classes that GHC can derive, including
Typeable and classes of kind ?→ ? such as Functor

[Faculty of Science
Information and Computing Sciences]

5

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

[Faculty of Science
Information and Computing Sciences]

6

Using generic functions

If a class is generic, it can be used in a deriving construct.
Assuming a type class

data Bit = 0 | 1

class Encode α where
encode :: α→ [Bit]

The end user can write

data Exp = Const Int | Plus Exp Exp
deriving (Show,Encode)

and then use

test :: [Bit]
test = encode (Plus (Const 1) (Const 2))

[Faculty of Science
Information and Computing Sciences]

7

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

[Faculty of Science
Information and Computing Sciences]

8

Basic idea

I For each datatype, there is an equivalent internal
representation.

I All the concepts contained in the data construct
(application, abstraction, choice, sequence, recursion) are
captured by a limited set of representation types.

I The compiler generates an internal representation for every
datatype, together with conversion functions and derived
instances

[Faculty of Science
Information and Computing Sciences]

9

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

[Faculty of Science
Information and Computing Sciences]

9

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp

(

C1 $ConstExp

(

Rec0

Int)
+

C1 $PlusExp

(

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

[Faculty of Science
Information and Computing Sciences]

9

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (

C1 $ConstExp

(

Rec0

Int)
+

C1 $PlusExp

(

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

[Faculty of Science
Information and Computing Sciences]

9

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (

Rec0

Int)
+ C1 $PlusExp (

Rec0

Exp×

Rec0

Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

[Faculty of Science
Information and Computing Sciences]

9

Example

data Exp = Const Int | Plus Exp Exp

type RepExp
0 =

D1 $Exp (C1 $ConstExp (Rec0 Int)
+ C1 $PlusExp (Rec0 Exp× Rec0 Exp))

Note that the representation is shallow – recursive calls are to
Exp, not RepExp0 .

Most of the representation is meta-information about:

I the datatype itself,

I the constructors,

I where recursive calls take place.

[Faculty of Science
Information and Computing Sciences]

10

Lifting

Our approach can handle type classes with parameters of both

I kind ? such as Encode and Show;

I kind ?→ ? such as Functor.

We therefore represent all datatypes at kind ?→ ?.

Types of kind ? get a dummy parameter in their representation.

[Faculty of Science
Information and Computing Sciences]

11

Representation types

data V1 ρ

data U1 ρ = U1

data (+) φ ψ ρ = L1 (φ ρ) | R1 (ψ ρ)

data (×) φ ψ ρ = φ ρ× ψ ρ

The void type V1 is for types without constructors.

The unit type U1 is for constructors without fields.

Sums represent choice between constructors.

Products represent sequencing of fields.

[Faculty of Science
Information and Computing Sciences]

12

Meta-information

data K1 ι γ ρ = K1 γ

data M1 ι µ φ ρ = M1 (φ ρ)

These types record additional information, such as names and
fixity, for instance. They are instantiated as follows:

data D -- datatypes
data C -- constructors
data S -- record selectors

data R -- recursive calls
data P -- parameters

type D1 = M1 D
type C1 = M1 C
type S1 = M1 S

type Rec0 = K1 R
type Par0 = K1 P

We group five combinators into two because we often do not
care about all the different types of meta-information.

[Faculty of Science
Information and Computing Sciences]

13

Example: meta-information for expressions

UHC automatically generates the following for Exp:

data $Exp
data $ConstExp
data $PlusExp

instance Datatype $Exp where
moduleName = "ModuleName"

datatypeName = "Exp"

instance Constructor $ConstExp where conName = "Const"

instance Constructor $PlusExp where conName = "Plus"

The classes Datatype and Constructor can hold more
information if desired.

[Faculty of Science
Information and Computing Sciences]

14

Conversion

We use a type class to mediate between values and
representations:

class Representable0 α τ where
from0 :: α→ τ χ
to0 :: τ χ→ α

Instance for Exp (automatically generated by UHC):

instance Representable0 Exp RepExp
0 where

from0 (Const n) = M1 (L1 (M1 (K1 n)))
from0 (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))

to0 (M1 (L1 (M1 (K1 n)))) = Const n
to0 (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′

[Faculty of Science
Information and Computing Sciences]

14

Conversion

We use a type class to mediate between values and
representations:

class Representable0 α τ where
from0 :: α→ τ χ
to0 :: τ χ→ α

Instance for Exp (automatically generated by UHC):

instance Representable0 Exp RepExp
0 where

from0 (Const n) = M1 (L1 (M1 (K1 n)))
from0 (Plus e e′) = M1 (R1 (M1 (K1 e× K1 e′)))

to0 (M1 (L1 (M1 (K1 n)))) = Const n
to0 (M1 (R1 (M1 (K1 e× K1 e′)))) = Plus e e′

[Faculty of Science
Information and Computing Sciences]

15

A note on extensions

The Representable0 class could use a functional dependency:

class Representable0 α τ | α→ τ where . . .

Alternatively, τ could be encoded as an associated type:

class Representable0 α where
type Rep0 α :: ?→ ?
from0 :: α→ Rep0 α χ
to0 :: Rep0 α χ→ α

But we want to stay inside Haskell98 as much as possible. We
only require support for multi-parameter type classes.

[Faculty of Science
Information and Computing Sciences]

16

Compiler support

For each datatype, the compiler generates the following:

I Meta-information, i.e. datatypes and class instances.

I Representation type synonym(s).

I Representable0 and/or Representable1 instance.

For each deriving construct, the compiler looks for an
appropriate DERIVABLE pragma (specified by the library writer)
and generates a default instance.

[Faculty of Science
Information and Computing Sciences]

17

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

[Faculty of Science
Information and Computing Sciences]

18

Generic function definitions

The library writer defines generic (derivable) functions.

We use two classes: one for the base types (kind ?):

class Encode α where
encode :: α→ [Bit]

and one for the representation types (kind ?→ ?):

class Encode1 φ where
encode1 :: φ χ→ [Bit]

[Faculty of Science
Information and Computing Sciences]

19

Simple cases

The generic cases are defined as instances of Encode1:

instance Encode1 V1 where
encode1 = []

instance Encode1 U1 where
encode1 = []

instance (Encode1 φ)⇒ Encode1 (M1 ι γ φ) where
encode1 (M1 a) = encode1 a

[Faculty of Science
Information and Computing Sciences]

20

Sums and products

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ+ ψ) where
encode1 (L1 a) = 0 : encode1 a
encode1 (R1 a) = 1 : encode1 a

instance (Encode1 φ,Encode1 ψ)⇒ Encode1 (φ× ψ) where
encode1 (a× b) = encode1 a ++ encode1 b

[Faculty of Science
Information and Computing Sciences]

21

Constants and base types

For constants, we rely on Encode:

instance (Encode α)⇒ Encode1 (K1 ι α) where
encode1 (K1 a) = encode a

In this way we close the recursive loop: if α is a representable
type, encode will call from and then encode1 again.

For base types, we need to provide ad-hoc instances:

instance Encode Int where encode = . . .
instance Encode Char where encode = . . .

[Faculty of Science
Information and Computing Sciences]

22

Default generic instance

Every generic function needs a default case:

encodeDefault :: (Representable0 α τ,Encode1 τ)
⇒ τ χ→ α→ [Bit]

encodeDefault rep x = encode1 ((from0 x) ‘asTypeOf‘ rep)

{−# DERIVABLE Encode encode encodeDefault #−}

We are done:

data Exp = Const Int | Plus Exp Exp deriving Encode

will cause the generation of

instance Encode Exp where

encode = encodeDefault (⊥ :: RepExp
0 χ)

[Faculty of Science
Information and Computing Sciences]

22

Default generic instance

Every generic function needs a default case:

encodeDefault :: (Representable0 α τ,Encode1 τ)
⇒ τ χ→ α→ [Bit]

encodeDefault rep x = encode1 ((from0 x) ‘asTypeOf‘ rep)

{−# DERIVABLE Encode encode encodeDefault #−}

We are done:

data Exp = Const Int | Plus Exp Exp deriving Encode

will cause the generation of

instance Encode Exp where

encode = encodeDefault (⊥ :: RepExp
0 χ)

[Faculty of Science
Information and Computing Sciences]

23

Back to the internals: kind ?→ ? types

For type constructors (kind ?→ ?), we use a few more
representation types:

newtype Par1 ρ = Par1 ρ

newtype Rec1 φ ρ = Rec1 (φ ρ)

newtype (◦) φ ψ ρ = Comp1 (φ (ψ ρ))

We use Par1 to store the parameter, Rec1 to encode recursive
occurrences of type constructors, and ◦ for type composition
(eg. lists of trees).

[Faculty of Science
Information and Computing Sciences]

24

Example: representing lists I

data List ρ = Nil | Cons ρ (List ρ)
deriving (Show,Encode,Functor)

The compiler generates instance of Representable0 for kind ?
functions:

type RepList
0 ρ =

D1 $List (C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

instance Representable0 (List ρ) (RepList
0 ρ) where

from0 Nil = M1 (L1 (M1 U1))
from0 (Cons h t) = M1 (R1 (M1 (K1 h× K1 t)))

to0 (M1 (L1 (M1 U1))) = Nil
to0 (M1 (R1 (M1 (K1 h× K1 t)))) = Cons h t

[Faculty of Science
Information and Computing Sciences]

25

Example: representing lists II

type RepList
0 ρ =

D1 $List (C1 $NilList U1

+ C1 $ConsList (Par0 ρ× Rec0 (List ρ)))

And an instance of Representable1 for kind ?→ ? functions:

type RepList
1 = D1 $List (C1 $NilList U1

+ C1 $ConsList (Par1 × Rec1 List))

instance Representable1 List RepList
1 where

from1 Nil = M1 (L1 (M1 U1))
from1 (Cons h t) = M1 (R1 (M1 (Par1 h× Rec1 t)))

to1 (M1 (L1 (M1 U1))) = Nil
to1 (M1 (R1 (M1 (Par1 h× Rec1 t)))) = Cons h t

[Faculty of Science
Information and Computing Sciences]

26

Back to the library writer: generic map I

We show how to define Functor generically as an example of a
kind ?→ ? function. For consistency, we again use two type
classes:

class Functor φ where
fmap :: (ρ→ α)→ φ ρ→ φ α

class Functor1 φ where
fmap1 :: (ρ→ α)→ φ ρ→ φ α

[Faculty of Science
Information and Computing Sciences]

27

Generic map II

The most interesting instance is the one for parameters:

instance Functor1 Par1 where
fmap1 f (Par1 a) = Par1 (f a)

Recursion and composition rely on Functor:

instance (Functor φ)⇒ Functor1 (Rec1 φ) where
fmap1 f (Rec1 a) = Rec1 (fmap f a)

instance (Functor φ,Functor1 ψ)⇒ Functor1 (φ ◦ ψ) where
fmap1 f (Comp1 x) = Comp1 (fmap (fmap1 f) x)

[Faculty of Science
Information and Computing Sciences]

28

Generic map III

The default case applies the conversion functions:

{−# DERIVABLE Functor fmap fmapDefault #−}
fmapDefault :: (Representable1 φ τ,Functor1 τ)

⇒ τ ρ→ (ρ→ α)→ φ ρ→ φ α
fmapDefault rep f x = to1 (fmap1 f (from1 x ‘asTypeOf‘ rep))

Now the compiler can derive Functor for List:

instance Functor List where

fmap = fmapList (⊥ :: RepList
1 ρ) where

fmapList :: RepList
1 ρ→ (ρ→ α)→ List ρ→ List α

fmapList = fmapDefault

[Faculty of Science
Information and Computing Sciences]

28

Generic map III

The default case applies the conversion functions:

{−# DERIVABLE Functor fmap fmapDefault #−}
fmapDefault :: (Representable1 φ τ,Functor1 τ)

⇒ τ ρ→ (ρ→ α)→ φ ρ→ φ α
fmapDefault rep f x = to1 (fmap1 f (from1 x ‘asTypeOf‘ rep))

Now the compiler can derive Functor for List:

instance Functor List where

fmap = fmapList (⊥ :: RepList
1 ρ) where

fmapList :: RepList
1 ρ→ (ρ→ α)→ List ρ→ List α

fmapList = fmapDefault

[Faculty of Science
Information and Computing Sciences]

29

Outline

Overview

Viewpoints

End user

Compiler implementer

Library writer

Conclusion

[Faculty of Science
Information and Computing Sciences]

30

Conclusion

I The deriving mechanism does not have to be “magic”: it
can be explained in Haskell.

I Derivable functions become accessible and portable.

I We provide an implementation in UHC and detailed
information on how to implement it for other compilers.

I We hope that the behavior of derived instances can be
redefined in Haskell Prime, perhaps along the lines of our
work.

	Overview
	Viewpoints
	End user
	Compiler implementer
	Library writer

	Conclusion

