
[Faculty of Science
Information and Computing Sciences]

GHC 7.6, More Well-Typed Than Ever

José Pedro Magalhães

http://www.dreixel.net

DHD >>= UHac 2012, Universiteit Utrecht, 20/04/2012

http://www.dreixel.net


[Faculty of Science
Information and Computing Sciences]

2

Introduction

This talk is about upcoming and exciting features in GHC 7.6:

I Data kinds

I Kind polymorphism

I Type-level literals

I Deferred type errors

We’ll go through a few examples of how to put these new
features to good use.

(Note that this is all still work in progress, and implementation
details might change!)



[Faculty of Science
Information and Computing Sciences]

3

Colours

In this talk I will use:

I Blue for constructors (most of the time)
Nothing , False, Left True, 3, "abc", ’p’

I Red for types
Int , String , Show a, data () = ()

I Green for kinds
?, ?→ ?



[Faculty of Science
Information and Computing Sciences]

3

Colours

In this talk I will use:

I Blue for constructors (most of the time)
Nothing , False, Left True, 3, "abc", ’p’

I Red for types
Int , String , Show a, data () = ()

I Green for kinds
?, ?→ ?



[Faculty of Science
Information and Computing Sciences]

3

Colours

In this talk I will use:

I Blue for constructors (most of the time)
Nothing , False, Left True, 3, "abc", ’p’

I Red for types
Int , String , Show a, data () = ()

I Green for kinds
?, ?→ ?



[Faculty of Science
Information and Computing Sciences]

4

1. Kinds



[Faculty of Science
Information and Computing Sciences]

5

What are kinds?

Just like types classify values...

3 :: Num a ⇒ a

’p’ :: Char

Just () :: Maybe ()

"abc" :: String

... kinds classify types:

Int :: ?

Char :: ?

Maybe :: ?→ ?

[] :: ?→ ?



[Faculty of Science
Information and Computing Sciences]

5

What are kinds?

Just like types classify values...

3 :: Num a ⇒ a

’p’ :: Char

Just () :: Maybe ()

"abc" :: String

... kinds classify types:

Int :: ?

Char :: ?

Maybe :: ?→ ?

[] :: ?→ ?



[Faculty of Science
Information and Computing Sciences]

6

The language of kinds

However, the language of kinds, unlike that of types, is rather
limited:

k ::= ?
| k → k

In particular: no user defined kinds, no kind variables.

(Caveat: we are ignoring # and friends for this talk.)



[Faculty of Science
Information and Computing Sciences]

7

Diversion: the Constraint kind

With -XConstraintKinds we get one new base kind to classify
constraints:

Show :: ?→ Constraint

Functor :: (?→ ?)→ Constraint

Num Int :: Constraint

Int ∼ Bool :: Constraint



[Faculty of Science
Information and Computing Sciences]

8

Why do we need a better kind system? I

We often want to restrict type arguments to a particular kind:

data Ze
data Su n

data Vec :: ?→ ?→ ? where
Nil :: Vec a Ze
Cons :: a → Vec a n → Vec a (Su n)

Types like Vec Int Int , Vec Int Bool , and Vec () () are valid
(albeit uninhabited). We want to say that the second argument
of Vec should only be Ze or Su!



[Faculty of Science
Information and Computing Sciences]

9

Why do we need a better kind system? II

Lack of kind polymorphism leads to code duplication:

class Typeable (a :: ?) where
typeOf :: a → TypeRep

class Typeable1 (a :: ?→ ?) where
typeOf 1 :: a b → TypeRep

class Typeable2 (a :: ?→ ?→ ?) where
typeOf 2 :: a b c → TypeRep

We would rather have a single, kind-polymorphic Typeable
class!



[Faculty of Science
Information and Computing Sciences]

10

Datatype promotion I

With -XDataKinds, the following code is valid:

data Nat = Ze | Su Nat

data Vec :: ?→ Nat → ? where
Nil :: Vec a Ze
Cons :: a → Vec a n → Vec a (Su n)

Note the implicit promotion of the constructors Ze and Su to
types Ze and Su, and of the type Nat to the kind Nat .

Types like Vec Int Int now trigger a kind error!



[Faculty of Science
Information and Computing Sciences]

11

Datatype promotion II

Only non-indexed datatypes with parameters of kind ? can be
promoted. So the following are ok:

data Bool = True | False

data Tree a = Leaf | Bin a (Tree a) (Tree a)

data Rose a = Rose a [Rose a ]

data Perfect a = Split (Perfect (a, a)) | Element a

But the following are not promoted:

data Fix f = In (f (Fix f ))

data Dynamic = ∀t .Typeable t ⇒ Dyn t

data Vec :: ?→ Nat → ? where
Nil :: Vec a Ze
Cons :: a → Vec a n → Vec a (Su n)



[Faculty of Science
Information and Computing Sciences]

11

Datatype promotion II

Only non-indexed datatypes with parameters of kind ? can be
promoted. So the following are ok:

data Bool = True | False

data Tree a = Leaf | Bin a (Tree a) (Tree a)

data Rose a = Rose a [Rose a ]

data Perfect a = Split (Perfect (a, a)) | Element a

But the following are not promoted:

data Fix f = In (f (Fix f ))

data Dynamic = ∀t .Typeable t ⇒ Dyn t

data Vec :: ?→ Nat → ? where
Nil :: Vec a Ze
Cons :: a → Vec a n → Vec a (Su n)



[Faculty of Science
Information and Computing Sciences]

12

Datatype promotion III

Type families can also be indexed over promoted types:

type family Add (m :: Nat) (n :: Nat) :: Nat

type instance Add Ze n = n
type instance Add (Su m) n = Su (Add m n)

append :: Vec a m → Vec a n → Vec a (Add m n)
append Nil v = v
append (Cons h t) v = Cons h (append t v)

This was all possible before, but now we can express the right
kind of Add .



[Faculty of Science
Information and Computing Sciences]

12

Datatype promotion III

Type families can also be indexed over promoted types:

type family Add (m :: Nat) (n :: Nat) :: Nat

type instance Add Ze n = n
type instance Add (Su m) n = Su (Add m n)

append :: Vec a m → Vec a n → Vec a (Add m n)
append Nil v = v
append (Cons h t) v = Cons h (append t v)

This was all possible before, but now we can express the right
kind of Add .



[Faculty of Science
Information and Computing Sciences]

13

Promoted lists and tuples

Haskell lists are natively promoted, so we can encode
heterogeneous lists as follows:

data HList :: [?]→ ? where
HNil :: HList []
HCons :: a → HList t → HList (a : t)

As an example, here is a heterogeneous collection:

hetList :: HList [Int ,Bool ]
hetList = HCons 3 (HCons False HNil)

Tuples are also promoted, e.g. (?, ?→ ?,Constraint).



[Faculty of Science
Information and Computing Sciences]

14

Kind-polymorphic type equality

Kind polymorphism reduces code duplication:

data EqT a b where
Refl :: EqT a a

Previously the kind of EqT would default to ?→ ?→ ?. With
-XPolyKinds it doesn’t, so the following types are all valid:
EqT a Int , EqT f Maybe, EqT t Either .



[Faculty of Science
Information and Computing Sciences]

15

Kind-polymorphic Typeable I

Now we can define a single kind-polymorphic Typeable class:

data Proxy (t :: k) = Proxy

class Typeable (t :: k) where
typeRep :: Proxy t → TypeRep

Note that Proxy is kind polymorphic!



[Faculty of Science
Information and Computing Sciences]

16

Kind-polymorphic Typeable II

We can give Typeable instances for types of various kinds:

instance Typeable Char where . . .

instance Typeable [] where . . .

instance Typeable Either where . . .



[Faculty of Science
Information and Computing Sciences]

17

Kind-polymorphic Typeable III

For backwards compatibility, the old methods can be defined by
instantiating typeRep to the right kind:

typeOf :: ∀a.Typeable a ⇒ a → TypeRep
typeOf x = typeRep (getType x ) where

getType :: a → Proxy a
getType = Proxy

typeOf 1 :: ∀f (a :: ?).Typeable f ⇒ f a → TypeRep
typeOf 1 x = typeRep (getType1 x ) where

getType1 :: f a → Proxy f
getType1 = Proxy



[Faculty of Science
Information and Computing Sciences]

17

Kind-polymorphic Typeable III

For backwards compatibility, the old methods can be defined by
instantiating typeRep to the right kind:

typeOf :: ∀a.Typeable a ⇒ a → TypeRep
typeOf x = typeRep (getType x ) where

getType :: a → Proxy a
getType = Proxy

typeOf 1 :: ∀f (a :: ?).Typeable f ⇒ f a → TypeRep
typeOf 1 x = typeRep (getType1 x ) where

getType1 :: f a → Proxy f
getType1 = Proxy



[Faculty of Science
Information and Computing Sciences]

18

2. Type-level literals



[Faculty of Science
Information and Computing Sciences]

19

Type-level literals

Thanks to Iavor Diatchki’s hard work, we will have efficient
type-level naturals:

0, 1, 2, . . . :: Nat

Note the colours!

These type-level naturals come with associated operations:

(6) :: Nat → Nat → Constraint
(+) :: Nat → Nat → Nat
(∗) :: Nat → Nat → Nat
(ˆ) :: Nat → Nat → Nat



[Faculty of Science
Information and Computing Sciences]

20

Value-level reflection

How do we manipulate values representing type-level naturals?
There is a family of singleton types, parameterised by literals:

newtype Sing :: a → ?

From types to values:

fromSing :: Sing a → SingRep a

type family SingRep a
type instance SingRep (a :: Nat) = Integer
type instance SingRep (a :: Symbol) = String

Note that we can have type-level literals other than naturals,
and SingRep is a kind-indexed family!



[Faculty of Science
Information and Computing Sciences]

20

Value-level reflection

How do we manipulate values representing type-level naturals?
There is a family of singleton types, parameterised by literals:

newtype Sing :: a → ?

From types to values:

fromSing :: Sing a → SingRep a

type family SingRep a
type instance SingRep (a :: Nat) = Integer
type instance SingRep (a :: Symbol) = String

Note that we can have type-level literals other than naturals,
and SingRep is a kind-indexed family!



[Faculty of Science
Information and Computing Sciences]

21

Revisiting vectors

Revisiting vectors, now with type-level naturals:

data Vec :: Nat → ?→ ? where
Nil :: Vec 0 a
Cons :: a → Vec n a → Vec (n + 1) a

Vector concatenation uses type-level natural number addition:

append :: Vec m a → Vec n a → Vec (m + n) a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)



[Faculty of Science
Information and Computing Sciences]

22

Why are type-level naturals hard to implement?

Function append requires GHC to prove equalities between
natural number expressions:

I Could not deduce (n ∼ (0 + n)) from the context (m ∼ 0)
bound by a pattern with constructor Nil :: ∀a.Vec 0 a

I Could not deduce ((m + n) ∼ ((n′ + n) + 1)) from the
context (m ∼ (n′ + 1)) bound by a pattern with
constructor
Cons :: ∀a (n :: Nat).a → Vec n a → Vec (n + 1) a

We need an equation solver!



[Faculty of Science
Information and Computing Sciences]

23

3. Deferring type errors



[Faculty of Science
Information and Computing Sciences]

24

The illogical next step

What is the next thing that you want, when you have data
kinds, polymorphic kinds, and type-level literals?

Naturally, to turn off type checking! :-)



[Faculty of Science
Information and Computing Sciences]

24

The illogical next step

What is the next thing that you want, when you have data
kinds, polymorphic kinds, and type-level literals?

Naturally, to turn off type checking! :-)



[Faculty of Science
Information and Computing Sciences]

25

Why would you want to do that?

For instance:

I Prototyping

I Large refactoring

I IDE



[Faculty of Science
Information and Computing Sciences]

26

Example I

With the flag -fdefer-type-errors, this example:

p, q :: Int
p = 1
q = ’1’

main = print p

Compiles with warning: “couldn’t match expected type Int
with actual type Char in an equation for q : q = ’1’”.

Runs and returns 1.



[Faculty of Science
Information and Computing Sciences]

27

Example II

p, q :: Int
p = 1
q = ’1’

main = print q

Fails at runtime with: “couldn’t match expected type Int with
actual type Char in an equation for q : q = ’1’”.



[Faculty of Science
Information and Computing Sciences]

28

Example III

t1 :: Int
t1 = ’1’

t2 :: a → String
t2 = show

data T a where
T1 :: Int → T Int
T2 :: a → T a

t3 :: T a
t3 = T1 0

main = print 1

Runs fine!



[Faculty of Science
Information and Computing Sciences]

29

How it works

GHC’s core language uses coercions to (safely) cast terms:

data T a = T1 (a ∼ Int) Int | T2 a

unT :: T a → a
unT (T1 c n) = n . (sym c)
unT (T2 x ) = x

. ::b → (b ∼ a)→ a

Evidence, or values of type (∼), is automatically generated by
GHC during type checking. Deferring type errors simply means
generating runtime errors as evidence!

(The complete story is a bit more involved; see the paper for
details!)

http://dreixel.net/research/pdf/epdtecp.pdf


[Faculty of Science
Information and Computing Sciences]

30

It’s not dynamic typing!

Note that deferring type errors doesn’t mean any form of
checks are performed at runtime. Consider this example:

f :: ∀a.a → a → a
f x y = x ∧ y

main = print (f True False)

It still fails at runtime!



[Faculty of Science
Information and Computing Sciences]

31

Summary

A better kind system gives us:

I Increase type safety

I Increase expressivity

I Reduce code duplication

I Allow for writing clearer code

And if we get tired of it we can always defer errors to runtime!



[Faculty of Science
Information and Computing Sciences]

31

Summary

A better kind system gives us:

I Increase type safety

I Increase expressivity

I Reduce code duplication

I Allow for writing clearer code

And if we get tired of it we can always defer errors to runtime!



[Faculty of Science
Information and Computing Sciences]

32

Future work

On the pipeline:

I Kind synonyms (from type synonym promotion)

I Template Haskell support

I A solver for type-level naturals

To think about:

I Generalized Algebraic Data Kinds

I User-defined solvers

I Deferring kind errors?



[Faculty of Science
Information and Computing Sciences]

32

Future work

On the pipeline:

I Kind synonyms (from type synonym promotion)

I Template Haskell support

I A solver for type-level naturals

To think about:

I Generalized Algebraic Data Kinds

I User-defined solvers

I Deferring kind errors?


	Kinds
	Type-level literals
	Deferring type errors

