[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

GHC 7.6, More Well-Typed Than Ever

José Pedro Magalhaes
http://www.dreixel.net

DHD >= UHac 2012, Universiteit Utrecht, 20/04/2012

http://www.dreixel.net

Introduction

This talk is about upcoming and exciting features in GHC 7.6:

» Data kinds
» Kind polymorphism
> Type-level literals

» Deferred type errors

We'll go through a few examples of how to put these new
features to good use.

(Note that this is all still work in progress, and implementation
details might change!)

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
2 NS

In this talk | will use:

» Blue for constructors (most of the time)
Nothing, False, Left True, 3, "abc", ’p’

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

In this talk | will use:

» Blue for constructors (most of the time)
Nothing, False, Left True, 3, "abc", ’p’

> Red for types
Int, String, Show a, data () = ()

3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

In this talk | will use:

» Blue for constructors (most of the time)
Nothing, False, Left True, 3, "abc", ’p’

> Red for types
Int, String, Show a, data () = ()

» Green for kinds
*, * —> K

(=] F

[Faculty of Science

& Universiteit Utrecht Information and Computing Sciences]

= E 9DQAC¢

1. Kinds

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
(=

DEE

at are kinds?

Just like types classify values...

3 = Num a = a
'p> i Char

Just () :: Maybe ()
"abc" :: String

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

at are kinds?

Just like types classify values...

3 2 Num a = a
'p> i Char

Just () :: Maybe ()
"abc" :: String

... kinds classify types:

Int Dk
Char %
Maybe :: x — *
I ok —> &
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

language of kinds

However, the language of kinds, unlike that of types, is rather
limited:

k=%
| b=k

In particular: no user defined kinds, no kind variables.

(Caveat: we are ignoring # and friends for this talk.)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ersion: the Constraint kind

With -XConstraintKinds we get one new base kind to classify
constraints:

Show 1 x — Constraint
Functor :: (x =) = Constraint
Num Int :: Constraint

Int ~ Bool :: Constraint

[Faculty of Science

& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Why do we need a better kind system? |

We often want to restrict type arguments to a particular kind:

data Ze
data Su n
data Vec :: + — » — ~ where
Nil 2 Vec a Ze
Cons :: a — Vec a n — Vec a (Su n)

Types like Vec Int Int, Vec Int Bool, and Vec () () are valid
(albeit uninhabited). We want to say that the second argument
of Vec should only be Ze or Su!

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

Why do we need a better kind system? |l

Lack of kind polymorphism leads to code duplication:

class Typeable (a::*) where
typeOf ::a — TypeRep

class Typeable; (a :: + — *) where
typeOf, ::a b — TypeRep

class Typeabley (a :: » — » — ») where
typeOfq i a b ¢ — TypeRep

We would rather have a single, kind-polymorphic Typeable

class!
@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

9 N

Datatype promotion |

With -XDataKinds, the following code is valid:

data Nat = Ze | Su Nat

data Vec::» — — » where
Nil 2 Vec a Ze
Cons ::a — Vec a n — Vec a (Su n)

Note the implicit promotion of the constructors Ze and Su to
types Ze and Su, and of the type Nat to the kind

Types like Vec Int Int now trigger a kind error!

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

10

atype promotion Il

Only non-indexed datatypes with parameters of kind * can be
promoted. So the following are ok:

data Bool = True | False
data Tree a = Leaf | Bin a (Tree a) (Tree a)
data Rose a = Rose a [Rose a)

data Perfect a = Split (Perfect (a,a)) | Element a

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Datatype promotion ||

Only non-indexed datatypes with parameters of kind « can be
promoted. So the following are ok:

data Bool = True | False
data Tree a = Leaf | Bin a (Tree a) (Tree a)
data Rose a = Rose a [Rose a

data Perfect a = Split (Perfect (a,a)) | Element a
But the following are not promoted:

data Fiz f =In (f (Fiz f))
data Dynamic = Vt. Typeable t = Dyn t

data Vec:: x — — ~ where
Nil i Vec a Ze
Cons ::a — Vec a n — Vec a (Su n)

%&‘W% L) [Facul.ty of S'cience
%‘l $ Universiteit Utrecht Information and Computing Sciences]
AN

11

” atype promotion llI

Type families can also be indexed over promoted types:

type family Add (m :: Nat) (n:: Nat) :: Nat
type instance Add Ze n=mn
type instance Add (Su m) n = Su (Add m n)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Datatype promotion IlI

Type families can also be indexed over promoted types:

type family Add (m :) (n)
type instance Add Ze n=mn
type instance Add (Su m) n = Su (Add m n)

append :: Vec a m — Vec a n — Vec a (Add m n)
append Nil V=0
append (Cons h t) v = Cons h (append t v)

This was all possible before, but now we can express the right
kind of Add.

[Faculty of Science

%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

12

Promoted lists and tuples

Haskell lists are natively promoted, so we can encode
heterogeneous lists as follows:

data HList :: x| — ~ where
HNil :: HList ||
HCons :: a — HList t — HList (a : t)

As an example, here is a heterogeneous collection:

hetList :: HList [Int, Bool]
hetList = HCons 3 (HCons False HNil)

Tuples are also promoted, e.g.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

i3

ir d-polymorphic type equality

Kind polymorphism reduces code duplication:

data Eqr a b where
Refl:: Eqr a a

Previously the kind of Fq, would default to » — x — «. With
3 -XPolyKinds it doesn't, so the following types are all valid:
==

- Eqp a Int, Eqp f Maybe, Eqp t Either.

e e |

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
=] (= = E DA

d-polymorphic Typeable |

Now we can define a single kind-polymorphic Typeable class:

data Proxy (t :: k) = Proxy

class Typeable (1t :: 1) where
typeRep :: Proxy t — TypeRep

Note that Proxy is kind polymorphic!

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

d-polymorphic Tiypeable Il

We can give Tiypeable instances for types of various kinds:
instance Typeable Char where. ..
instance Typeable |]

where. ..
instance Typeable Either where. ..

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

- d-polymorphic Typeable 11

For backwards compatibility, the old methods can be defined by
instantiating typeRep to the right kind:

typeOf ::Va.Typeable a = a — TypeRep
typeOf = = typeRep (getType x) where
getType :: a — Proxy a
getType _ = Proxy

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Kind-polymorphic Typeable 111

For backwards compatibility, the old methods can be defined by
instantiating typeRep to the right kind:

typeOf ::Ya.Typeable a = a — TypeRep
typeOf = = typeRep (getType x) where
getType :: a — Proxy a
getType _ = Proxy

typeOf | ::Vf (a:: %). Typeable f = f a — TypeRep
typeOf | x = typeRep (getType, x) where
getTypey :: f a — Prozy f
getType; — = Proxy

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

17

2. Type-level literals

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

pe-level literals

Thanks to lavor Diatchki's hard work, we will have efficient
type-level naturals:

0,1,2,...:: Nat

Note the colours!

These type-level naturals come with associated operations:

<) :: Nat — Nat — Constraint
+) :: Nat — Nat — Nat
: Nat — Nat — Nat

*)
) :: Nat — Nat — Nat

(
(
(
.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ue-level reflection

How do we manipulate values representing type-level naturals?
There is a family of singleton types, parameterised by literals:

newtype Sing :: a —

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Value-level reflection

How do we manipulate values representing type-level naturals?
There is a family of singleton types, parameterised by literals:

newtype Sing :: a —
From types to values:

fromSing :: Sing a — SingRep a

type family SingRep a

type instance SingRep (a ::) = Integer
type instance SingRep (a ::) = String

Note that we can have type-level literals other than naturals,
and SingRep is a kind-indexed family!

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

20

Revisiting vectors

Revisiting vectors, now with type-level naturals:

data Vec:: Nat — ~ — » where
Nil ::VecOa
Cons::a— Vecna— Vec(n+1)a

Vector concatenation uses type-level natural number addition:

append :: Vec m a — Vecn a — Vec (m + n) a
append Nil Ys = ys
append (Cons = zs) ys = Cons z (append xs ys)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

21

Why are type-level naturals hard to implement?

Function append requires GHC to prove equalities between
natural number expressions:

» Could not deduce (n ~ (0 + n)) from the context (m ~ 0)
bound by a pattern with constructor Nil ::Va.Vec 0 a

» Could not deduce ((m + n) ~ ((n/ + n) + 1)) from the
context (m ~ (n/ + 1)) bound by a pattern with
constructor
Cons ::Va (n :: Nat).a — Vecn a — Vec (n+ 1) a

We need an equation solver!

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

22

3. Deferring type errors

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

e illogical next step

What is the next thing that you want, when you have data
kinds, polymorphic kinds, and type-level literals?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e illogical next step

What is the next thing that you want, when you have data
kinds, polymorphic kinds, and type-level literals?

Naturally, to turn off type checking! :-)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

y would you want to do that?

For instance:

» Prototyping

» Large refactoring
» IDE

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

mple |

With the flag -fdefer-type-errors, this example:

D, q:: Int
p=1
q:)i;

main = print p

Compiles with warning: “couldn’t match expected type Int
with actual type Char in an equation for ¢q: ¢ = 21°".

Runs and returns 1.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ample |1

p,q:: Int
p=1
q:)l;

main = print q

Fails at runtime with: “couldn't match expected type Int with
actual type Char in an equation for ¢: ¢ = 21°".

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

mple 11

t1 2 Int
=1

ty :: a — String
to = show

data 7" a where
Ty ::Int — T Int
To:a — Ta

tg:: T a
t3="1T,0

main = print 1

Runs fine!

Universiteit Utrecht

[m]

=

[Faculty of Science
Information and Computing Sciences]

DEE

How it works

GHC's core language uses coercions to (safely) cast terms:

data T a=T) (a ~Int) Int | T2 a
unT =T a—a

unT (T1 ¢n) =n > (sym c)

unT (Th z) =z

pib—=(b~a)—a
Evidence, or values of type (~), is automatically generated by

GHC during type checking. Deferring type errors simply means
generating runtime errors as evidence!

(The complete story is a bit more involved; see the paper for

details!)
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
29 K

http://dreixel.net/research/pdf/epdtecp.pdf

 not dynamic typing!

Note that deferring type errors doesn’t mean any form of
checks are performed at runtime. Consider this example:

fuYa.a—a—a
fey=zNhy
main = print (f True False)

It still fails at runtime!

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

A better kind system gives us:

> Increase type safety
> Increase expressivity
» Reduce code duplication

» Allow for writing clearer code

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Summary

A better kind system gives us:

v

Increase type safety

> Increase expressivity

v

Reduce code duplication

v

Allow for writing clearer code

And if we get tired of it we can always defer errors to runtime!

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
31 N

On the pipeline:

» Kind synonyms (from type synonym promotion)
» Template Haskell support

» A solver for type-level naturals

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Future work

On the pipeline:

» Kind synonyms (from type synonym promotion)
» Template Haskell support

» A solver for type-level naturals
To think about:

» Generalized Algebraic Data Kinds
» User-defined solvers

» Deferring kind errors?

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
32 N

	Kinds
	Type-level literals
	Deferring type errors

