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Abstract
Static type systems strive to be richly expressive while still being
simple enough for programmers to use. We describe an experiment
that enriches Haskell’s kind system with two features promoted
from its type system: data types and polymorphism. The new sys-
tem has a very good power-to-weight ratio: it offers a significant
improvement in expressiveness, but, by re-using concepts that pro-
grammers are already familiar with, the system is easy to under-
stand and implement.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and structures, Polymorphism; F.3.3
[Studies of Program Constructs]: Type structure

General Terms Languages, Design

Keywords Haskell, promotion, kinds, polymorphism

1. Introduction
Static type systems are the world’s most successful application
of formal methods. Types are simple enough to make sense to
programmers; they are tractable enough to be machine-checked on
every compilation; they carry no run-time overhead; and they pluck
a harvest of low-hanging fruit. It makes sense, therefore, to seek to
build on this success by making the type system more expressive
without giving up the good properties we have mentioned.

Every static type system embodies a compromise: it rejects
some “good” programs and accepts some “bad” ones. As the
dependently-typed programming community knows well, the abil-
ity to express computation at the type level can improve the “fit”;
for example, we might be able to ensure that an alleged red-black
tree really has the red-black property. Recent innovations in Haskell
have been moving in exactly this direction. Notably, GADTs [24]
and type families [25] turn the type system into a (modest) pro-
gramming language in its own right.
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But, embarrassingly, type-level programming in Haskell is al-
most entirely untyped, because the kind system has too few kinds
(?, ? → ?, and so on). Not only does this prevent the programmer
from properly expressing her intent, but stupid errors in type-level
programs simply cause type-level evaluation to get stuck rather
than properly generating an error (see §2). In addition to being too
permissive (by having too few kinds), the kind system is also too
restrictive, because it lacks polymorphism. The lack of kind poly-
morphism is a well-known wart; see, for example, Haskell’s fam-
ily of Typeable classes (§2.5), with a separate (virtually identical)
class for each kind.

In this paper we describe a design that fixes these problems,
and we sketch its implementation in GHC, our Haskell compiler.
Our design is inspired by Conor McBride’s Strathclyde Haskell
Enhancement (SHE) preprocessor [19], which automatically pro-
motes datatypes to be datakinds. Our work goes well beyond SHE
by also introducing kind polymorphism, and integrating these two
new features with convenient source syntax and full type (and kind)
inference.

From a type-theoretic point of view, this paper has little new to
say: full-spectrum dependently typed languages like Coq [31] or
Agda [23] are more expressive still. But, as we discuss in more de-
tail in §7, these languages are in some ways too powerful: they have
a high barrier to entry both for programmers (who want to write
programs in natural and straightforward ways) and implementors
(who have to worry about efficiently executing these programs).
Instead, we start from the other end: we carefully extend a state-
of-the-art functional programming language with features that ap-
pear in dependently-typed languages. Our primary audience is the
community of Designers and Implementors of Typed Languages, to
whom we offer a big increase in expressive power for a very modest
cost in terms of intellectual and implementation complexity.

Specifically, our contributions are:

• We extend Haskell with a rich kind system, including kind poly-
morphism. Suitable value and type constructors are automati-
cally promoted to become type and kind constructors, respec-
tively (we explain precisely which constructors can be lifted
in §3.3). We show, by example, that these modest extensions
offer a large gain in expressiveness (§2).

• We formalize an explicitly-typed intermediate language, Sys-
tem F↑C (pronounced “FC-pro”), that embodies the new kind
system (§3). F↑C is no toy: we have implemented it in GHC as
a modest extension of GHC’s existing intermediate language,
System FC. Our extension to this intermediate language guides



our overall design—going further would require much more
significant effort.

• GHC uses F↑C throughout its optimization phases, and each op-
timization must ensure that the transformed program is well-
typed. So the metatheory of F↑C is of practical importance, es-
pecially subject reduction (§4). In addition to subject reduction
we prove progress, which ensures that coercions can be erased
at runtime without compromising type safety.

• We describe the modifications to GHC’s type inference engine
(§5) and the source language extensions (§6) to support the
new features. (Haskell is a large language, so these sections are
necessarily informal.)

Finally, we discuss related work (§7) as well as directions for future
research (§8).

Our goal throughout is to provide maximum gain for minimum
pain. One could go further in terms of supported features, but
we believe we have found a sweet spot. The new extensions are
fully implemented, and will soon be released as part of GHC. The
experience of GHC’s users will then inform our understanding of
possible future developments in the design space of dependently-
typed programming languages.

2. Typed type-level programming
We begin with an informal motivation for the extensions of our
system.

2.1 Promoting datatypes
Consider the following standard implementation of length-indexed
vectors in Haskell:

data Zero
data Succ n

data Vec :: ?→ ?→ ? where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Succ n)

We declare two empty datatypes, Zero and Succ, to serve as
“type-level values”, and use a generalized algebraic datatype
(GADT) [24] to define a type Vec whose first argument is the type
of its elements and whose second argument is a type-level natural
number reflecting the length of its values.

However, for a language like Haskell with a strong, static type
system, this example is rather embarrassing: it is untyped! The
type parameter to Succ has kind ?, which gives us no indication
that we intend for it to always be a type-level representation of a
natural number. The same is true of the second parameter to Vec.
Essentially, ? is serving as the single type in a “uni-typed” type
system.1 We are not prevented from writing nonsensical types such
as Succ Bool or Vec Zero Int.

It would be much better to be able to write

data Nat = Zero | Succ Nat

data Vec :: ?→ Nat→ ? where
VNil :: Vec a Zero
VCons :: a → Vec a n → Vec a (Succ n)

This is the sort of thing we could write in a language with a full-
spectrum dependent type system, such as Agda [23]. We have de-
clared a normal datatype Nat, and Vec takes as its second argument
a value of type Nat. Our intention for the arguments of Vec is now
clear, and writing Vec Zero Int will rightly yield a type error.

1 Well, not quite uni-typed, because we have arrow kinds, but close.

In our new system the above example is now valid Haskell!
In the declaration of Vec we can see that Nat is used as a kind.
Following SHE, we achieve this effect by automatically promoting
(suitable) datatypes to become kinds; and their data constructors
(Zero and Succ in this case) to become type-level data. In effect
this gives the Haskell programmer the ability to declare their own
kinds, by declaring datatypes and promoting them up a level.

These datakinds may also be used in GHC’s indexed type fami-
lies (i.e. type functions). For example,

type family Plus (a :: Nat) (b :: Nat) :: Nat
type instance Plus Zero b = b
type instance Plus (Succ a) b = Succ (Plus a b)

In general, a suitable (§3.3) datatype declaration

data T = C1 T1 | C2 T2 | ...

not only defines a type constructor T and data constructors C1, C2,
. . . , but also a kind T, a type constructor C1 of kind T1 → T
(using the promoted kinds T and T1), and similarly for the other
constructors.

2.2 Resolving namespaces
Although in principle a simple idea, in practice this approach leads
to an awkward naming problem for source Haskell programs, be-
cause Haskell allows type constructors and data constructors to
have the same name:

data T = T Int

If we see “T” in a type, does it refer to the type T (of kind ?) or the
promoted data constructor T (of kind Int→ T)? In such cases, we
adopt the following notation: plain T means the type constructor,
while 'T, with a prefixed single quote, denotes the promoted data
constructor. So the fully explicit version of the foregoing example
looks like this:

data Nat = Zero | Succ Nat

data Vec :: ?→ Nat→ ? where
VNil :: Vec a 'Zero
VCons :: a → Vec a n → Vec a ('Succ n)

Where the promotion is unambiguous, the quote may be omitted.
We do not require (or allow) the quote notation in kinds, be-

cause there is no ambiguity to resolve. We do not allow promoting
types which are themselves indexed by a promoted data constructor
(§3.3), so anything in a kind other than ? can only be a promoted
type.

2.3 Kind polymorphism for promoted types
We also allow promoting parameterized datatypes, such as lists.
For example:

data HList :: [?]→ ? where
HNil :: HList '[ ]
HCons :: a → HList as → HList (a : as)

Here we have declared HList, the type of heterogeneous singly-
linked lists. The index of HList is a list of types which records the
types of the elements (created by promoting the list datatype). For
example,

HCons "Hi" (HCons True HNil) :: HList (String : Bool : '[ ])

is a heterogeneous list containing two values of different types.
Haskell allows the syntactic sugar [a, b ] for the explicit list (a :
b : [ ]), and we support the same sugar in types, thus:

HCons "Hi" (HCons True HNil) :: HList '[String,Bool ]



The prefix quote serves, as before, to distinguish the type-level list
from the list type in, say reverse :: [a ]→ [a ].

If this promotion is to be allowed, what is the kind of the
promoted data constructor '(:)? Since the data constructor (:) is
type-polymorphic, the promoted constructor '(:) must be kind-
polymorphic:

'(:) :: ∀X . X → [X ]→ [X ]

where X is a kind variable.
We have by now seen the most significant modifications to the

kind language. Haskell kinds now include the kind of types of val-
ues, written ?, other base kinds formed from promoted datatypes,
arrow kinds, and polymorphic kinds. This means that we can only
promote data constructors with types analogous to one of these
kinds. In particular, we will not promote data constructors with
constrained types (including GADTs) or higher-order type poly-
morphism. We return to this issue in §3.3.

2.4 Kind polymorphism for datatypes
Kind polymorphism is useful independently of promotion. Con-
sider the following datatype declaration:

data TApp f a = MkTApp (f a)

This code has always been legal Haskell, but, lacking kind poly-
morphism, the kind of TApp was defaulted to (? → ?) → ? → ?
[18, Section 4.6]. However, TApp is naturally kind-polymorphic;
just as we do type generalization for term definitions, we now also
do kind generalization for type definitions. The kind of TApp is
thus inferred as ∀X . (X → ?)→ X → ?. (Like all datatypes, the
result of TApp must still be ?.)

A less contrived example is the following GADT, used to reify
proofs of type equality:

data EqRefl a b where
Refl :: EqRefl a a

The kind of EqRefl also used to default to (? → ? → ?); that
is, EqRefl could only express equality between types of values.
To express equality between type constructors, such as Maybe,
required tediously declaring a separate EqRefl-like datatype for
each kind, with the only difference being kind annotations on
EqRefl’s type parameters. However, EqRefl is now inferred to have
the polymorphic kind ∀X . X → X → ?, so it can be used
equally well on any two types of the same kind. We also allow
the programmer to write

data EqRefl (a :: X ) (b :: X ) where
Refl :: ∀X . ∀(a :: X ). EqRefl a a

if they wish to indicate the kind polymorphism explicitly.
A final example of a datatype definition that benefits from kind

polymorphism is a higher-kinded fixpoint operator [21]

data Mu f a = Roll (f (Mu f ) a).

Mu can be used to explicitly construct polymorphic recursive types
from their underlying functors2; for instance:

data ListF f a = Nil | Cons a (f a)
type List a = Mu ListF a

Previously, the kind of Mu would have been defaulted to ((? →
?) → (? → ?)) → (? → ?); with the addition of kind polymor-
phism, Mu is given the polymorphic kind

Mu :: ∀X . ((X → ?)→ (X → ?))→ (X → ?)

2 The cognoscenti will know that lists can be expressed with a simpler, first-
order fixpoint operator. We use a higher-kinded one here because it can also
handle an indexed type such as Vec.

and can now be used to construct recursive types indexed on kinds
other than ?. For example, here is an explicit construction of the
Vec datatype from §2.2:

data VecF (a :: ?) (f :: Nat→ ?) (n :: Nat) where
VFNil :: VecF a f Zero
VFCons :: a → f n → VecF a f (Succ n)

type Vec a n = Mu (VecF a) n

This time, Mu is instantiated to ((Nat → ?) → (Nat → ?)) →
(Nat→ ?).

2.5 Kind polymorphism for classes
Classes can also usefully be kind-polymorphic. This allows us, for
example, to clean up Haskell’s family of Typeable classes, which
currently look like this:

class Typeable (a :: ?) where
typeOf :: a → TypeRep

class Typeable1 (a :: ?→ ?) where
typeOf1 :: ∀b. a b → TypeRep

... and so on ...

The lack of kind polymorphism is particularly unfortunate here;
the library has only a fixed, ad hoc, collection of Typeable classes.
With kind polymorphism we can write

class Typeable a where
typeOf :: Proxy a → TypeRep

We have generalized in two ways here. First, Typeable gets a
polymorphic kind: Typeable :: ∀X . X → Constraint3, so that it
can be used for types of any kind. Second, we need some way to
generalize the argument of typeOf , which we have done via a poly-
kinded data type Proxy:

data Proxy a = Proxy

The idea is that, say typeOf (Proxy :: Proxy Int) will return the
type representation for Int, while typeOf (Proxy :: Proxy Maybe)
will do the same for Maybe. The proxy argument carries no
information—the type has only one, nullary constructor—and is
only present so that the programmer can express the type at which
to invoke typeOf . Because there are no constraints on the kind of
a , it is safe to assign Proxy the polymorphic kind ∀X . X → ?.

The user is allowed to provide instances of the class Typeable
for specific kind and type instantiations, such as:

instance Typeable Int where
typeOf = ... -- some representation for Int

instance Typeable Maybe where
typeOf = ... -- some representation for Maybe

Even though the class declaration is kind polymorphic, the in-
stances need not be.

2.6 Kind polymorphism for terms
So far, we have given examples of types with polymorphic kinds.
It is also useful to have terms whose types involve kind polymor-
phism. We have already seen several, since data constructors of
kind-polymorphic data types have kind-polymorphic types, thus:

Proxy :: ∀X . ∀(a :: X ). Proxy a
Refl :: ∀X . ∀(a :: X ). EqRefl a a

Here is a more substantial example, taken from McBride [20].
Consider, first, the type constructor ( :→) defined as follows:

3 The Constraint kind is a new base kind introduced to classify the types
of evidence terms, such as type class dictionaries—more about this feature
in §3.



type s :→ t = ∀i . s i → t i

If s, t :: κ → ? are type constructors indexed by types of kind κ,
then s :→ t is the type of index-preserving functions from s to t .

For example, consider the function vdup which duplicates each
element of a length-indexed vector, guaranteeing to preserve the
length of the vector:

vdup :: Vec a n → Vec (a, a) n
vdup VNil = VNil
vdup (VCons a as) = VCons (a, a) (vdup as)

Using the type synonym above, vdup’s type can be rewritten as

vdup :: Vec a :→ Vec (a, a).

McBride observes that it is possible (and useful) to define func-
tors that lift index-preserving functions (like vdup) from one in-
dexed set (such as Vec a n) to another (such as square matrices
Vec (Vec a n) n). He introduces the notion of an indexed functor

class IFunctor f where
imap :: (s :→ t)→ (f s :→ f t)

and goes on to present several interesting instances of this class.
Now, what are the kinds of s , t , and f ? A bit of thinking (or

simply running GHC’s type checker) reveals that there must be
kinds X1 and X2 such that s , t , and f have the kinds

s, t :: X1 → ?
f :: (X1 → ?)→ (X2 → ?)

All three are mentioned in the type of imap, which ought to be
polymorphic overX1 andX2. The full type of imap must therefore
be

∀X1 X2. ∀f :: (X1 → ?)→ (X2 → ?). ∀s, t :: X1 → ?.

IFunctor f ⇒ (s :→ t)→ (f s :→ f t).

Note that this type involves two different sorts of ∀ abstractions: the
first abstracts over the kindsX1 andX2, whereas the others abstract
over the type constructors s , t , and f .

As an aside, this example highlights an interesting difference
between F↑C and SHE [19], which restricts the kind of f to

f :: ('a → ?)→ ('b → ?).

That is, using SHE, f can only transform types indexed by some
promoted kinds, whereas in our implementation f can transform
types indexed by arbitrary kinds. This is certainly no failing of
SHE, which places this restriction on kind polymorphism for the
sensible reason that promoted kinds can all be “erased” to ?, and
as a textual preprocessor SHE cannot be expected to do much else.
However, this does show one of the advantages of a natively imple-
mented, strongly typed implementation over a textual preprocessor.

2.7 Kind-indexed type families
In GHC type families are type-indexed. With the addition of kind-
polymorphism we may now write kind- and type-indexed families,
as the example below demonstrates:

type family Shape (a :: X ) :: ?
type instance Shape (a :: ?) = a
type instance Shape (a :: ?→ X ) = Shape (a ())

The above type family is an example of arity-generic programming,
where Shape t denotes the application of the type constructor t to
as many copies of the unit type as its kind allows. This form of kind
indexing allows for code reuse, since without it the programmer
would have to declare separate type families at each kind, in a
manner similar to the current treatment of the Typeable class.

2.8 Summary
So far, we have demonstrated the nature of programs that can be
written with our two new features:

• Automatic promotion of datatypes to be kinds and data con-
structors to be types.

• Kind polymorphism, for kinds, types (including kind-indexed
type families and type classes), and terms.

The former allows us to give informative kinds to types, thereby
excluding bad programs that were previously accepted. The latter
accepts a wider class of good programs, and increases re-use, just
like type polymorphism. Both features are integrated with type and
kind inference.

Our extensions not only enable programmers to write new and
interesting programs, but also help clean up existing libraries. For
instance, the HList library [13] may be entirely rewritten without
code duplication and extra type classes to track well-kindedness.
Similarly, the Scrap Your Boilerplate library [14, 15] can benefit
from the kind-polymorphic Typeable class described previously.

3. System F↑C
In this section we present the extensions to GHC’s intermediate
language, System FC [29], that are necessary to support these new
source language features. System FC is an explicitly typed interme-
diate language which has simple syntax-directed typing rules and is
robust to program transformation. Through the mechanism of type
(and now kind) inference, source Haskell programs are elaborated
to well-typed System FC programs, a process that guarantees the
soundness of type inference.

This section presents the technical details of System FC and its
extensions, to provide a semantics for the new features. Because FC
is a small language, it allows us to make precise exactly what our
new design does and does not support. Moreover, System FC has a
straightforward metatheory, so we can justify our design decisions
by demonstrating that our additions do not complicate reasoning
about the properties of the system (§4).

For clarity, we call the extended language of this paper System
F↑C (pronounced “FC-pro”), reserving the name System FC for the
prior version of the language.

3.1 System F↑C overview

The expression syntax of System F↑C is given in Figure 1, with
the differences from System FC highlighted. As the language is
explicitly typed, this syntax references kinds (κ) and types (τ ),
which appear in Figure 3 and Figure 4.

The syntax also mentions coercions (γ), which explicitly en-
code type equalities arising from type family instance declarations
and GADT constructors (plus a Haskell-specific form of type gen-
erativity, newtype declarations). For example, each type family
instance declaration gives rise (through elaboration) to an equal-
ity axiom that equates the left and the right-hand side of the in-
stance declaration. Such axioms can be composed and transformed
to form coercions between more complex types. The role of coer-
cions is not central to this paper, so we refer the reader to related
work for more details on motivation and uses of coercions [29, 33],
or the foundations of type equalities in type theory [16].

This abstract syntax of F↑C makes no mention of the quote-
marks of §2.2 because the quotes are required only to resolve
ambiguity in the concrete syntax of Haskell. As a convention, we
use overline notation to stand for a list of syntactic elements, such
as the branches of a case expression p→ u. Multi-substitution,
such as τ [σ/a], is only well-defined when the lists have the same
length.



e, u ::= Expressions
| x Variables
| λx: τ. e | e1 e2 Abstraction/application
| Λa:κ. e | e τ Type abstraction/application
| λc: τ. e | e γ Coercion abstraction/application
| ΛX . e Kind abstraction
| e κ Kind application
| K Data constructors
| case e of p → u Case analysis
| e . γ Casting

p ::= Patterns

| K Y b:κ c:σ x: τ Data constructor pattern

q ::= Term-level names
| x Term variables
| K Data constructors
| c Coercion variables and axioms

w ::= Type-level names
| a Type variables
| H Type constants
| F Type functions

bnd ::= q: τ | w:κ | X:� Bindings

Γ ::= ∅ | Γ, bnd Contexts

Figure 1. Syntax of expressions and contexts

System FC has three forms of abstraction, over expressions
λx: τ. e , types Λa: κ. e , and coercions λc: τ. e . Figure 1 shows
that System F↑C adds a fourth abstraction form, ΛX . e , to abstract
over kinds. Correspondingly, the term language of F↑C includes
four forms of application, for expressions, coercions, types, and
kinds. In order to make sure that all subtleties of the semantics are
clearly exposed, we choose not to merge the four abstraction forms
into one (and similarly applications), as is customary in pure type
systems [2]; they are, however, combined in our implementation.

Γ t̀m e : τ

Γ t̀m e : τ1 Γ c̀o γ : τ1 ∼ τ2
Γ t̀m e . γ : τ2

T CAST

Γ, X:� t̀m e : τ

Γ t̀m ΛX . e : ∀X . τ
T KABS

Γ t̀m e : ∀X . τ Γ k̀ κ : �

Γ t̀m e κ : τ [κ/X ]
T KAPP

Γ t̀m e : T κ σ
for each
Kj :∀X . ∀a:κj . ∀Yj .∀bj :ηj . ψj → ϕj → (T X a) ∈ Γ0

η′j = ηj [κ/X ]

ψ′j = ψj

[
κ/X

]
[σ/a]

ϕ′j = ϕj

[
κ/X

]
[σ/a]

Γ,Xj :�, bj : ηj , cj :ψ′j , xj :ϕ
′
j t̀m uj : τ

Γ t̀m case e of Kj Yj bj : η′j cj :ψ′j xj :ϕ′j → uj : τ
T CASE

Figure 2. Typing rules (selected)

Expression typing The typing judgement for terms is syntax-
directed and largely conventional; Figure 2 gives the typing rules
for some of the novel syntactic forms. Explicit type coercions of
the form e . γ are used to cast the type of an expression e from
τ1 to τ2, given γ, a proof that the two types are equal. Note that
although these coercions are explicit in the intermediate language,
they have no runtime significance and are erased by GHC in a later
compilation stage.

Rule T CASE is used to typecheck pattern matching expressions
and will be discussed in more detail in §3.2, where we address
datatypes.

ι ::= Base kinds
| ? Star
| Constraint Constraint kind

κ, η ::= Kinds
| X Kind variables
| ι Base kinds
| κ1 → κ2 Arrow kinds
| ∀X . κ Kind polymorphism
| T κ Promoted type constant

Figure 3. Syntax of kinds

H ::= Type constants
| T Datatypes
| (→) Arrow
| (∼) Equality

σ, τ, ϕ, ψ ::= Types
| a Variables
| H Constants
| F Type functions
| K Promoted data constructors
| ∀ a:κ. τ Polymorphic types
| ∀X . τ Kind-polymorphic types
| τ1 τ2 Type application
| τ κ Kind application

γ, δ ::= Coercions
| c κ γ Variables and Axioms
| 〈τ〉 Reflexivity
| sym γ Symmetry
| γ1 # γ2 Transitivity
| ∀ a:κ. γ Type polytype cong
| ∀X . γ Kind polytype cong
| γ1 γ2 Type app cong
| γ κ Kind app cong
| γ[τ ] Type instantiation
| γ[κ] Kind instantiation
| nthi γ Nth argument projection

Figure 4. Syntax of types and coercions

Kinds The syntax of kinds of F↑C is given in Figure 3. In addi-
tion to the familiar ? and κ1 → κ2 kinds, the syntax introduces
kind variables X and polymorphic kinds ∀X . κ. The kind well-
formedness rules are given in Figure 5. Kinds are uni-typed in the
sense that there exists only one sort of kinds: �. Two more notable
syntactic forms of kinds are included in F↑C:

• Applications of promoted datatypes (§2), of the form T κ. We
discuss the details of this mechanism in §3.3.



Γ k̀ κ : � Kind validity

X:� ∈ Γ

Γ k̀ X : �
KV VAR

Γ k̀ ι : �
KV BASE

Γ k̀ κ1 : � Γ k̀ κ2 : �

Γ k̀ κ1 → κ2 : �
KV ARR

Γ, X:� k̀ κ : �

Γ k̀ ∀X . κ : �
KV ABS

Γ k̀ κ1 : � .. Γ k̀ κn : �
∅ t̀y T : ?n → ?

Γ k̀ T κ : �
KV LIFT

Γ t̀y τ : κ Kinding

` Γ w:κ ∈ Γ

Γ t̀y w : κ
K VAR

` Γ K: τ ∈ Γ ∅ ` τ  κ

Γ t̀y K : κ
K LIFT

Γ k̀ κ : � Γ, a:κ t̀y τ : ι

Γ t̀y ∀ a:κ. τ : ι
K ABS

Γ t̀y τ1 : κ1 → κ2 Γ t̀y τ2 : κ1

Γ t̀y τ1 τ2 : κ2
K APP

Γ, X:� t̀y τ : ι

Γ t̀y ∀X . τ : ι
K KABS

Γ t̀y τ : ∀X . κ Γ k̀ κ1 : �

Γ t̀y τ κ1 : κ[κ1/X ]
K KAPP

Γ t̀y τ1 : ι1 Γ t̀y τ2 : ι2

Γ t̀y τ1 → τ2 : ι2
K ARRT

` Γ

Γ t̀y (∼) : ∀X .X → X → Constraint
K EQ

Figure 5. Formation rules for kinds and types

• Another small extension of System F↑C is a special base kind
Constraint [4], which classifies types representing evidence,
such as type class dictionaries and type equalities. While in
source Haskell such evidence is implicit, the elaboration of
a source program into F↑C constructs explicit evidence terms
whose types have kind Constraint. We use the metavariable ι
to refer to an arbitrary base kind (? or Constraint).

The kind well-formedness rules in Figure 5 ensure that kinds are
first-order, in the sense that we do not include any kind operators.
In other words, Maybe by itself is not a kind, although Maybe ? is,
and there are no classifiers for kind variables other than �.

Types The types of F↑C are given in Figure 4, and their kind-
ing rules appear in Figure 5. The new constructs include (i) kind-
polymorphic types ∀X . τ , (ii) kind application τ κ, and (iii) pro-
moted data constructors. Kind-polymorphic types classify kind-
abstractions in the expression language. The syntax τ κ applies a
type constructor with a polymorphic kind to a kind argument. There
is no explicit kind abstraction form in the type language for the
same reason that there is no explicit type abstraction form—type
inference in the presence of anonymous abstractions would require
higher-order unification.

The syntax of constants includes the equality constructor (∼),
which has the polymorphic kind ∀X .X → X → Constraint by
rule K EQ. This means that equality constraints written τ1 ∼ τ2 are

Γ c̀o γ : τ Coercion typing

c: ∀X . ∀a:η. (τ1 ∼ τ2) ∈ Γ
for each γi ∈ γ,

Γ c̀o γi : σi ∼ ϕi

Γ ` σi , ϕi : (ηi [κ/X ])

Γ c̀o c κ γ : (τ1
[
κ/X

]
[σ/a]) ∼ (τ2

[
κ/X

]
[ϕ/a])

C VARAX

Γ t̀y τ : κ

Γ c̀o 〈τ〉 : τ ∼ τ
C REFL

Γ c̀o γ : τ1 ∼ τ2
Γ c̀o sym γ : τ2 ∼ τ1

C SYM

Γ c̀o γ1 : τ1 ∼ τ2 Γ c̀o γ2 : τ2 ∼ τ3
Γ c̀o γ1 # γ2 : τ1 ∼ τ3

C TRANS

Γ, a:κ ` τ1, τ2 : ι
Γ, a:κ c̀o γ : τ1 ∼ τ2

Γ c̀o ∀ a:κ. γ : ∀ a:κ. τ1 ∼ ∀ a:κ. τ2
C TABS

Γ, X:� ` τ1, τ2 : ι
Γ, X:� c̀o γ : τ1 ∼ τ2

Γ c̀o ∀X . γ : ∀X . τ1 ∼ ∀X . τ2
C KABS

Γ ` σ1, σ2 : κ1 → κ2 Γ ` τ1, τ2 : κ1
Γ c̀o γ1 : σ1 ∼ σ2 Γ c̀o γ2 : τ1 ∼ τ2

Γ c̀o γ1 γ2 : σ1 τ1 ∼ σ2 τ2
C APP

Γ ` τ1, τ2 : ∀X . κ′
Γ c̀o γ : τ1 ∼ τ2 Γ k̀ κ : �

Γ c̀o γ κ : τ1 κ ∼ τ2 κ
C KAPP

Γ c̀o γ : ∀ a:κ. τ1 ∼ ∀ a:κ. τ2 Γ t̀y σ : κ

Γ c̀o γ[σ] : τ1[σ/a] ∼ τ2[σ/a]
C TINST

Γ c̀o γ : ∀X . τ1 ∼ ∀X . τ2 Γ k̀ κ : �

Γ c̀o γ[κ] : τ1[κ/X ] ∼ τ2[κ/X ]
C KINST

Γ c̀o γ : H κ τ ∼ H κ τ ′

Γ c̀o nthj γ : τj ∼ τ ′j
C NTH

Figure 6. Formation rules for coercions

actually formed from the application of the constant (∼) to a kind
and two type arguments of that kind. In FC, this equality constraint
was a special form, but the addition of polymorphic kinds means
that it can be internalized and treated just like any other type
constructor. To keep the syntactic overhead low, we continue to use
the notation τ1 ∼ τ2 to stand for the application (∼)κ τ1 τ2 when
the kind is unimportant or clear from the context.

Another minor point is the use of ι to classify the base kinds
in rules K ABS and K KABS (Figure 5). A conventional system
would require that a type ∀a.τ has kind ?, but in our system it
can have either kind ? or Constraint, because both classify types
inhabited by values.

Coercions Coercions, also shown in Figure 4, are “proofs” that
provide explicit evidence of the equality between types. The judge-
ment Γ c̀o γ : τ1 ∼ τ2 expresses the fact that the coercion γ is
a proof of equality between the types τ1 and τ2. If such a deriva-
tion is possible, it is an invariant of the relation that τ1 and τ2 have
the same kind, and that kind instantiates the (∼) constructor in the
conclusion of the relation.

The coercion forms are best understood by looking at their for-
mation rules, shown in Figure 6. Coercion variables and uses of
primitive axioms are typed by rule C VARAX. Recall that primi-
tive coercion axioms may be kind-polymorphic since type family
instance declarations in source Haskell may be kind-polymorphic,
such as the last Shape instance from §2.7. When such axioms are



` Γ Context well-formedness

` ∅
GWF EMPTY

` Γ X # Γ

` Γ, X:�
GWF SORT

` Γ Γ k̀ κ : � a # Γ

` Γ, a:κ
GWF TYVAR

` Γ Γ k̀ κ : � F # Γ

` Γ, F:κ
GWF TYFUN

κ = ∀X .κ→ ?
` Γ Γ k̀ κ : � T # Γ

` Γ, T:κ
GWF TYDATA

` Γ Γ t̀y τ : κ x # Γ

` Γ, x: τ
GWF VAR

τ = ∀X . ∀a:κ. ∀Y. ∀b:η. (σ → (T X a))
` Γ Γ t̀y τ : ? K # Γ

` Γ, K: τ
GWF CON

τ = ∀X . ∀a:κ. (τ1 ∼ τ2)
` Γ Γ t̀y τ : Constraint c # Γ

` Γ, c: τ
GWF AX

Figure 7. Context formation rules

used, they must be applied to kind and coercion arguments. In this
rule and elsewhere, the notation Γ ` σ, ϕ : κ ensures that both
types σ and ϕ have the same kind in the same context.

Coercions include rules for reflexivity, symmetry, transitiv-
ity and congruence (rules C TABS through C KAPP). Coercions
can be destructed, through instantiation (C TINST and C KINST)
as well as by appealing to the injectivity of type constructors
(C NTH). Notice that in rule C NTH the kinds of the two appli-
cations are required to be the same—this syntactically ensures that
coercions are always between types of exactly the same kind.

Contexts System F↑C allows top-level definitions for datatypes T,
type functions F, and equality axioms c. Rather than give concrete
syntax for declarations of these three constants, we instead give
formation rules for the initial context in which terms are type-
checked, shown in Figure 7. The notation x # Γ indicates that x is
fresh for Γ.

Operational semantics Selected rules of the operational seman-
tics of F↑C appear in Figure 8, including the β-reduction rules for
abstraction forms and for case expressions. The operational seman-
tics includes crucial “push” rules, inherited from FC, which make
sure that coercions do not interfere with evaluation. For example,
rule S PUSH illustrates a situation where a coercion may interfere
with a β-reduction. In that case γ must be a coercion between two
function types, (τ1 → τ2) ∼ (σ1 → σ2). The rule decomposes γ
into two simpler coercions and rewrites the term to expose oppor-
tunities for reduction.

3.2 Kind polymorphism and datatypes
We allow datatype definitions to have polymorphic kinds. However,
rule GWF TYDATA requires all type constants to have prenex kind
quantification, 4

T:∀X .κ→ ?.

4 We use the notation ∀X . τ as an abbreviation for ∀X1.∀X2. . . . τ . Like-
wise, κ→ ? abbreviates κ1 → κ2 → . . .→ ?.

e −→ e′ One-step reduction

(λx: τ. e) e′ −→ [e′/x ]e
S BETA

(λc: τ. e) γ −→ [γ/c]e
S CBETA

(Λa:κ. e) τ −→ [τ/a]e
S TBETA

(ΛX . e)κ −→ [κ/X ]e
S KBETA

Ki Y b: η c:ψ x:ϕ→ ui ∈ p → u

case Ki κ σ κ′ τ γ e of p → u −→
ui [e/x ] [γ/c]

[
τ/b
] [
κ′/Y

] S CASE

(v . γ) e −→ (v (e . sym (nth1 γ))) . nth2 γ
S PUSH

(v . γ) τ −→ v τ . γ[τ ]
S TPUSH

(v . γ)κ −→ v κ . γ[κ]
S KPUSH

∅ c̀o γ′ : T κ σ1 ∼ T κ σ2
K: ∀X .∀a:κ.∀Y. ∀b:η. (ψ1 ∼ ψ2 → ϕ→ (T X a)) ∈ Γ

ψ′1 = ψ1

[
τ/b
] [
κ′/Y

] [
κ/X

]
ψ′2 = ψ2

[
τ/b
] [
κ′/Y

] [
κ/X

]
ϕ′ = ϕ

[
τ/b
] [
κ′/Y

] [
κ/X

]
for each γj ∈ γ,
γ′j = sym ([a 7→nth γ′]ψ1 j ) # γj # [a 7→nth γ′]ψ2 j

for each ej ∈ e,

e′j = ej . [a 7→nth γ′]ϕ′j
S CPUSH

case (K κ σ1 κ′ τ γ e) . γ′ of p → u −→
case K κ σ2 κ′ τ γ′ e′ of p → u

(v . γ1) . γ2 −→ v . (γ1 # γ2)
S COMB

Figure 8. Operational semantics of F↑C (selected rules)

In other words, type constants must take all of their kind arguments
before any of their type arguments. This restriction simplifies their
semantics. For example, because type constants are injective, equa-
tions between them may be decomposed into equations between
their type arguments, as in the rule C NTH. By not allowing kind
and type arguments to mix, we can write this rule succinctly.

Data constructors for kind-polymorphic datatypes must them-
selves be kind polymorphic (the alternative would be to allow kind
equalities, just as type equalities are currently allowed for GADTs,
but we do not: see §3.4). Rule GWF CON requires data construc-
tors to have types of the following form:

K :∀X . ∀a:κ. ∀Y. ∀b:η. ϕ→ (T X a)

Data constructors can be polymorphic over kinds and types, all
of which must show up as parameters to the datatypes that they
construct. Furthermore, data constructors can take additional kind
and type arguments that do not appear in the result type, as well
as term arguments whose types may include constraints on any of
the quantified type variables. As a result, data constructor values
carry six lists of arguments. (Above, ϕ includes both the types of
the coercion and expression arguments.)

The treatment of these six arguments shows up in the formation
rule for case expressions (T CASE, from Figure 2), and the two
reduction rules for case expressions (S CASE and S CPUSH, from



Figure 8). These rules were already quite involved in System FC—
adding kind polymorphism is a straightforward modification.

The rule T CASE typechecks a case expression. In this rule, the
lists κ and σ are the kind and type parameters to some datatype
T . These arguments replace the kind and type variables X and a ,
wherever they appear in the case expression. The rule then type-
checks each branch of the case expression in a context extended
with the “existential” kind and type variables, as well as the coer-
cion assumptions and constructor arguments of that branch.

The rule S CASE describes the normal reduction of a case ex-
pression. If the scrutinee is a data constructor value, the appropri-
ate branch is selected, after substitution of the last four arguments
carried by the data constructor value—the “existential” kinds and
types, coercions, and expression arguments.

If there is a coercion around the data constructor value, rule
S CPUSH pushes the coercion into the arguments of the data con-
structor. Again, the complexity of the semantics of this rule is in-
herited from System FC. The coercion γ′ and expression arguments
e are each transformed by types “lifted” to coercions, using the op-
eration [a 7→nth γ]τ . This operation replaces each type variable ai
appearing in the type τ with a coercion nthi γ. We discuss this
operation in more detail in §4. For more on the operation of this
rule, we refer readers to previous work [29, 33].

3.3 Promotion
We allow the “promotion” of certain type constructors into kinds,
and the promotion of certain data constructors to become types. But
exactly which type and data constructors are promoted, and what
kinds do the promoted data constructors have? The answers may
be found in Figure 5:

• Type constructors. Rule KV LIFT states that T κ is a valid kind
only if T is a fully applied type constructor of kind ?n → ?.

• Data constructors. Rule K LIFT states that a data constructor
K may be treated as a type if K’s type τ can be promoted
to a kind κ, via the judgement ∅ ` τ  κ, whose rules
are given in Figure 9. The latter judgement merely replaces
type polymorphism in τ with kind polymorphism in κ, and
checks that type constructors mentioned in τ can themselves
be promoted.

The rule for promoting type constructors is deliberately restrictive.
There are many Haskell type constructors that do not have kinds of
the form ?n → ?.

• We do not promote higher-order types of kind, say, (?→ ?)→
?. If we did so, we would need a richer classification of kinds
to ensure that such promoted higher-order types were applied
to appropriate arguments.

• We do not promote a type whose kind itself involves promoted
types, such as Vec : ? → Nat → ?. If we did so, the second
argument to Vec would have to be a kind classified by Nat.
In order to make this possible we would either have to allow
“double promotion” (such as promoting a natural number value
all the way to the kind level), or make the type and kind levels
fully dependent. Either approach would complicate matters, so
we rule them out for now.

• We do not promote type constructors with polymorphic kinds.
If we did, we would need a system of polymorphic sorts to
accommodate the promoted kinds. At present, this seems like
extra complication for little benefit.

The guiding principle here is that kinds are not classified, or, to
put it another way, there is only one sort � in the kind validity
judgement Γ k̀ κ : �.

Θ ` τ  κ Type lifting

a 7→ X ∈ Θ

Θ ` a  X
L VAR

Θ ` τ1  κ1 Θ ` τ2  κ2

Θ ` τ1 → τ2  κ1 → κ2
L ARR

Θ, a 7→ X ` τ  κ

Θ ` ∀ a: ? . τ  ∀X . κ
L ABS

∅ t̀y T : ?n → ? Θ ` τi  κi
n

Θ ` T τ  T κ
L APP

Figure 9. Type to kind translation

3.4 Design principle: no kind equalities!
There is one other major restriction on promoted types: we do not
promote GADTs. This limitation derives from an important design
principle of F↑C: we do not allow equality constraints between kinds,
nor kind coercions. Since GADT data constructors take coercions
between types as arguments, their promotions would necessarily
require coercions between kinds. Disallowing kind equality con-
straints and coercions means that α-equivalence is the only mean-
ingful equivalence for kinds, which dramatically simplifies the sys-
tem.

The difficulty with kind constraints lies with type equivalence.
In F↑C, all nontrivial type conversions must be made explicit in the
code, through the use of coercions. Coercions simplify the metathe-
ory of the FC language, by rendering type checking trivially decid-
able and separating the type soundness proof from the consistency
of the type equational theory. In the jargon of dependent type the-
ory, FC has a trivial definitional equality (types are equal only when
α-equivalent) and an expressive propositional equality (coercions
are proofs of a much coarser equality between types.)

The presence of nontrivial kind equivalences muddies the def-
inition of propositional equality between types. We would need to
generalize the coercion judgement to mention two types as well as
their kinds. But what should the interpretation of this judgement
be? That the types and their kinds are equal? Should we be able to
extract a proof of kind equality from a proof of type equality? Such
a system would lead to bloated proofs and many additional rules.

We plan to address these issues in future work, using ideas
from Observational Type Theory [1]. But even if we are able to
design a sensible core language, there is still the issue of the
complexity of the source language. Heterogeneous equality in Coq
and Agda is notoriously difficult for users to understand and use. By
only allowing one-level indexing, we have defined a simple, well-
behaved language for users to get started with dependently-typed
programming.

4. Metatheory
We now turn to the formal properties of F↑C, and ultimately show
that the system enjoys subject reduction and progress under some
consistency requirements about the initial environment. We begin
with some scaffolding lemmas.

Lemma 4.1 (Kind substitution).

1. If ` Γ1, (X :�),Γ2 and Γ1 k̀ κ : � then ` Γ1,Γ2[κ/X ].
2. If Γ1, (X :�),Γ2 t̀y τ : κ and Γ1 k̀ κ

′ : � then Γ1,Γ2[κ′/X ] t̀y

τ [κ′/X ] : κ.
3. If Γ1, (X :�),Γ2 k̀ η : � and Γ1 k̀ κ : � then Γ1,Γ2[κ/X ] k̀

η[κ/X ] : �.



The lemmas above are proved simultaneously by induction on
the height of the derivation. In each case, the induction hypothesis
asserts that all lemmas hold for derivations of smaller height. They
have to be proved simultaneously, as each of the three judgements
appeals to the other two.

Lemma 4.2 (Type substitution).

1. If ` Γ1, (a: η),Γ2 and Γ1 t̀y τ : η then ` Γ1,Γ2[τ/a].
2. If Γ1, (a: η),Γ2 t̀y σ : κ and Γ1 t̀y τ : η then Γ1,Γ2[τ/a] t̀y

σ[τ/a] : κ.
3. If Γ1, (a: η),Γ2 k̀ κ : � and Γ1 t̀y τ : η then Γ1,Γ2[τ/a] k̀

κ : �.

With these two lemmas, we can prove that the derived coercions
of our system are homogeneous.

Lemma 4.3 (Coercion homogeneity). If Γ c̀o γ : τ1 ∼ τ2 then
Γ ` τ1, τ2 : κ for some kind κ.

As a corollary, if Γ c̀o γ : τ1 ∼ τ2 then Γ t̀y τ1 ∼
τ2 : Constraint, since the two types have the same kind and the
application of the (∼) constructor is possible by rule K EQ.

Moreover, coercion derivations (like type and kind derivations)
are preserved by type and kind substitution.

Lemma 4.4 (Kind substitution in coercions). If Γ1, (X :�),Γ2 c̀o

γ : τ1 ∼ τ2 and Γ1 k̀ κ : � then Γ1,Γ2[κ/X ] c̀o γ[κ/X ] :
τ1[κ/X ] ∼ τ2[κ/X ].

Lemma 4.5 (Type substitution in coercions). If Γ1, (a: η),Γ2 c̀o

γ : τ1 ∼ τ2 and Γ1 t̀y τ : η then Γ1,Γ2[τ/a] c̀o γ[τ/a] :
τ1[τ/a] ∼ τ2[τ/a].

We may also substitute coercions inside other coercions:

Lemma 4.6 (Coercion substitution in coercion).

1. If Γ1, (c: τ1 ∼ τ2),Γ2 c̀o γ : σ1 ∼ σ2 and Γ1 c̀o γ
′ : τ1 ∼

τ2 then Γ1,Γ2[γ′/c] c̀o γ[γ′/c] : σ1 ∼ σ2.
2. If ` Γ1, (c: τ1 ∼ τ2),Γ2 and Γ1 c̀o γ′ : τ1 ∼ τ2 then
` Γ1,Γ2[γ′/c].

3. If Γ1, (c: τ1 ∼ τ2),Γ2 t̀y τ : κ and Γ1 c̀o γ
′ : τ1 ∼ τ2 then

Γ1,Γ2[γ′/c] t̀y τ : κ.
4. If Γ1, (c: τ1 ∼ τ2),Γ2 k̀ κ : � and Γ1,Γ2[γ′/c] k̀ κ : �.

4.1 Subject reduction
To show subject reduction, we first prove a substitution theorem for
terms.

Theorem 4.7 (Substitution).

1. If Γ1, (X : �),Γ2 t̀m e : τ and Γ1 k̀ κ : � then
Γ1,Γ2[κ/X ] t̀m e[κ/X ] : τ [κ/X ].

2. If Γ1, (a: η),Γ2 t̀m e : τ and Γ1 t̀y σ : η then
Γ1,Γ2[σ/a] t̀m e[σ/a] : τ [σ/a].

3. If Γ1, (c: σ1 ∼ σ2),Γ2 t̀m e : τ and Γ1 c̀o γ : σ1 ∼ σ2

then Γ1,Γ2[γ/c] t̀m e[γ/c] : τ .

We also need a substitution lemma for terms:

Lemma 4.8 (Expression substitution). If Γ1, (x:σ),Γ2 t̀m e : τ
and Γ1 t̀m u : σ then Γ1,Γ2 t̀m e[u/x ] : τ .

Finally, the crux of subject reduction is the so-called lifting
lemma, which also has the same key role for proving subject reduc-
tion in previous work on FC. Recall the lifting operation from §3.2,
denoted [a 7→γ]τ . Lifting provides a way to convert a type to a coer-
cion by substituting its free type variables with coercions between
types of the appropriate kind. Its formal definition is straightfor-
ward.

Lemma 4.9 (Lifting). If Γ, (a: κ) t̀y τ : η and Γ c̀o γ : τ1 ∼
τ2 with Γ ` τ1, τ2 : κ then Γ c̀o [a 7→γ]τ : τ [τ1/a] ∼ τ [τ2/a].

With all the scaffolding in place, we can show that evaluation
preserves types.

Theorem 4.10 (Subject reduction). Let Γ0 be the initial environ-
ment that does not contain any term, type, or kind variable bindings
(we will refer to this as the top-level environment in what follows).
The following is true: if Γ0 t̀m e1 : τ and e1 −→ e2 then
Γ0 t̀m e2 : τ .

4.2 Progress
Despite the tedious scaffolding lemmas, subject reduction is not
hard conceptually, since each evaluation rule constructs proof terms
which justify the typeability of the reduct.

Progress, on the other hand, is more interesting: the formal op-
erational semantics of F↑C involves coercions and pushing coercions
in terms, and we must make sure that these coercions do not stand in
the way of ordinary β-reductions. If coercions could prevent some
reductions, that would contradict our claim that coercions can be
safely and entirely erased at runtime. The coercion erasure of a
“safe” stuck F↑C term could lead to a crashing program.

Intuitively, for progress to hold we must impose the restriction
that if a coercion coerces the type of a value to another value type
then the two value types have the same runtime representation. We
formalize this condition below.

Definition 4.11 (Value type). A type τ is a value type in an envi-
ronment Γ if Γ t̀y τ : ι and moreover it is of the form H κ σ, or
∀ a:κ. σ, or ∀X . σ.

To prevent unsound type equalities, the initial environment con-
taining axioms and datatypes (but no term, type, and coercion vari-
ables) should be consistent, a notion that we directly adapt from
previous work on FC [29, 33].

Definition 4.12 (Consistency). A context Γ is consistent iff

• If Γ c̀o γ : H κ σ ∼ τ , and τ is a value type, then τ = H κ ϕ.
• If Γ c̀o γ : (∀ a: κ. σ) ∼ τ , and τ is a value type, then
τ = ∀ a:κ. ϕ.

• If Γ c̀o γ : (∀X . σ) ∼ τ , and τ is a value type, then
τ = ∀X . ϕ.

Under the assumption of consistency for the top-level defini-
tions we can state and prove progress.

Theorem 4.13 (Progress). If Γ0 t̀m e : τ and Γ0 is a top-level
consistent environment, then either e is a value possibly wrapped
in casts, or e −→ e ′ for some e ′.

As defined above, consistency is a property not only of the
initial environment but also of the coercion formation judgement. It
is therefore not easy to check. For this reason, previous work [33]
gives sufficient conditions exclusively on the top-level environment
which guarantee consistency (for a similar but simpler coercion
language). These conditions can be adapted in a straightforward
way here—the only interesting bit is that type family axioms now
involve type and kind arguments and both forms of arguments have
to be taken into account when checking the overlap of these axioms.

We finally remark that unsound equalities such as Int∼Bool
can be derived by terms, since Int∼Bool is just a type, so one
may wonder how type safety can possibly hold. For instance, the
following is valid F↑C code:

f :: (Int∼Bool)
f = ⊥

Fortunately, such terms do not pose any danger to type safety,
because the syntax prevents us from injecting ordinary terms into



the universe of coercions and using them to erroneously cast the
types of other expressions.

5. Surface language and elaboration
When extending Haskell’s surface syntax to expose the new fea-
tures to users, we found two major issues that needed to be ad-
dressed. First, a new mechanism for namespace resolution was
needed; second, we had to decide when and to what degree kind
generalization should be performed.

5.1 Namespace resolution
As we saw in §2.2, type and data constructors have separate names-
paces, so that type constructors and data constructors can be given
the same name. This practice is common in Haskell programs, start-
ing with Prelude declarations such as (, ) and [ ]. However, when
data constructors can appear in types, it is no longer clear what
namespace should be used to resolve type constants. SHE explored
one solution to this problem: it requires all promoted data construc-
tors and kinds to be surrounded by curly braces.

data Vec :: ?→ {Nat} → ? where
VNil :: Vec a {Z}
VCons :: a → Vec a {n } → Vec a {S n }

Note that curly braces can surround type expressions, not just
data constructors, as in {S n } above. Such notation is useful for
expressions with multiply lifted components. However, in SHE,
type variables with promoted kinds must also be lifted, meaning
that SHE is based on lifting values rather than just constructors.

In contrast, we separate the issue of namespace resolution from
that of semantics by adopting the single quote mechanism. Each
(ambiguous) data constructor must be marked. We find that this
notation is easier to specify, as the treatment of type variables is
completely standard. Furthermore, because quotes can often be
omitted, it is also visually lighter.

5.2 Kind generalization
The second issue that we needed to address in the source language
extension was the specification of where kind generalization should
occur, and how it should interact with type and kind annotations and
lexically scoped type (and now kind) variables.

In general, our extension tries to be consistent with the existing
treatment of type polymorphism. Kind variables are generalized
at the same places that type variables are, and kind variables can
be brought into scope using annotations just like type variables.
Furthermore, kind variables that appear in type argument signatures
are quantified. For example, the declaration of T below is valid, and
the kind of T is inferred to be ∀X . (X → ?)→ X → ?.

data T (a :: X → ?) b = K (a b)

In the same way, kind polymorphism can be explicitly specified
in class declarations. For example, the definition of IFunctor in
§2.6 is accepted just as it appears there, but the programmer may
also write this more explicit definition:

class IFunctor (f :: (X1 → ?)→ X2 → ?) where
imap :: ∀(s, t :: X1 → ?). (s :→ t)→ (f s :→ f t)

The first line brings the kind variables X1 and X2 into scope, along
with the type variable f ; all are then mentioned in the type of imap.

6. Implementation
We have a preliminary implementation of our system ready for
release with GHC version 7.4. This initial release includes a solid
implementation of F↑C in the Core language; the source-language
features, and the kind inference that supports them, mostly work but

are less fully tested. The changes required to the compiler, although
widespread, were surprisingly modest. We briefly summarize them
here. To understand this explanation it may help to recall that
GHC’s type inference engine elaborates input terms by filling in
implicit type and kind abstractions and applications, so that the
terms can subsequently be desugared into F↑C.

6.1 The Core language
We extended GHC’s Core language to support kind polymorphism,
which was mostly straightforward. The only awkward point was
that we often abstract a term over a set of type variables whose
order used to be immaterial. Now we need to abstract over type
and kind variables, and we must ensure that the kind variables come
first, because they may appear in the kinds of the type variables.

6.2 Type inference for terms
The type inference engine needed to be extended in two main ways:

• When instantiating the type of a kind-polymorphic function, say
f :: ∀X . ∀ a:X . τ we must instantiate a fresh unification kind
variable for X , and a fresh unification type variable for a , with
an appropriate kind.

• When unifying a type variable with a type we must unify its
kind with the kind of the type.

All kind unifications are solved on the fly by the usual side-
effecting unification algorithm, and do not generate evidence. In
contrast, type equalities are often gathered as constraints to be
solved later, and are witnessed by evidence in the form of coercion
terms [26]. Not having to do this step for kind equalities rests on
the design principle discussed in §3.4.

6.3 Kind inference for types
GHC allows the user to write type signatures, such as

f :: Typeable a ⇒ [Proxy a ]→ TypeRep

When elaborating this type signature, the inference engine per-
forms kind generalization of the type, yielding the F↑C type

f : ∀X . ∀a : X . Typeable X a → [Proxy X a ]→ TypeRep

Type declarations themselves are a little more complex. Consider

data T f a = MkT (S a f ) | TL (f a)
data S b g = MkS (T g b)

These two mutually recursive definitions must be kind checked
together. Indeed the situation is precisely analogous to the well-
studied problem of type inference for mutually recursive term def-
initions.

• We sort the type declarations into strongly connected compo-
nents, and kind check them in dependency order.

• A type constructor can be used only monomorphically within
its mutually recursive group.

• Type inference assigns each type constructor a kind variable,
then walks over the definitions, generating and solving kind
constraints.

• Finally, the kind of each constructor in the group is generalized.

Class declarations are handled in the same way. There is nothing
new here—it all works in precisely the same way as for terms—so
we omit a precise account.

7. Related work
Promoting data types The starting point for this work has been
Conor McBride’s Strathclyde Haskell Enhancement preproces-



sor [19], which, among other features, allows users to promote
datatypes to be used in the type language. Throughout this paper,
we have already discussed several points of both similarity and
difference between our work and SHE.

The language extensions we describe here are most closely
related to the LX calculus [6] and the Ωmega language [27, 28].
These languages also allow the definition of datakinds and type-
level functions over datatypes. Like both of these systems, GHC
maintains a phase separation: terms can depend on types, but not
vice versa. In terms of expressiveness, F↑C is very similar to LX:
F↑C includes kind polymorphism and does not require termination
proofs for type-level computation, but lacks anonymous functions
at the type-level. However, F↑C is less expressive than Ωmega, which
allows GADT programming at the type level. Because datakinds
may be indexed, Ωmega also allows the definition of datatypes in
the kind language. In fact, Ωmega has a hierarchy of levels (types,
kinds, superkinds, etc.) where each level includes datatypes that can
be indexed by elements from any of the higher levels. All datatype
definitions are “level-polymorphic”, meaning that they can be used
at any level. On the other hand, Ωmega does not compile to an
explicitly typed language with evidence terms, and LX does not
include explicit evidence for type equalities. This makes it harder
in those languages to reason about type safety, robustness under
transformations, and the soundness of type and kind inference. In
F↑C many of the restrictions in our design (such as no evidence-
based kind-equalities) are motivated by our desire to keep the
explicitly typed intermediate language simple.

Our extension does not add full-spectrum dependency to Haskell.
It merely makes the phase distinction less distinct. Full-spectrum
languages actually allow program expressions to invade the type
system, but in the presence of nontermination or other effects, of-
ten limit those expressions to a subset with a trivial definition of
equality. For example, the Aura programming language [12] and
Licata and Harper’s Positive Dependent Types [17] only allow de-
pendency on values of positive types (such as datatypes formed
from strict products and sums). Alternatively, the F∗ language [30]
allows dependency for all values, but mandates a trivial definition
of equality for functions. In contrast, promotion is more similar to
the duplication described above. Although Haskell datatypes are
nonstrict, we do not promote values, only the constructors used to
form them.

Agda takes the promotion idea one step further with its experi-
mental support for universe polymorphism5. In Agda, all definitions
(including datatypes) may be polymorphic over their level. Func-
tions that work with such datatypes may also be level polymorphic,
so the same function can be used both at runtime and for type-level
computation. This extension is much more sophisticated than the
simple form of promotion that we describe here, and its interac-
tions with the rest of the type system are not yet well understood.

Kind polymorphism Kind polymorphism is an often requested
feature for Haskell in its own right. In fact, the Utrecht Haskell
Compiler (UHC)6 [7] already supports kind polymorphism. In par-
ticular, unknown kinds of type constructors do not default to kind
?, but are instead generalized. The particular motivation for this ad-
dition to UHC seems to be the ability to define a kind-polymorphic
Leibniz equality datatype:

data Eq a b = Eq (∀f . f a → f b)

However, UHC does not compile to a typed intermediate language
like System F↑C.

5 http://wiki.portal.chalmers.se/agda/agda.php?n=Main.
UniversePolymorphism
6 http://www.cs.uu.nl/wiki/UHC

Kind polymorphism has also been added to typed intermediate
languages, even when the source language did not include kind
polymorphism. Trifonov et al. [32] found that the addition of kind
polymorphism to the FLINT/ML compiler allowed it to be fully
reflexive. In other words, they were able to extend their type-
analyzing operations so that they are applicable to the type of any
runtime value in the language.

More formally, the properties of a polymorphic lambda calculus
with kind polymorphism were studied by Girard [8]. Girard showed
that this calculus can encode a variant of the Burali-Forti paradox
and is thus inappropriate for use as a constructive logic. This proof
of “Girard’s paradox” is described in detail by Barendregt [2].
Hurkens later simplified this paradox [11]. It is not clear whether
this result holds for our system, since we do not directly allow
function abstraction at the type or kind levels. However, even if
it did, it would result in a non-normalizing term, which Haskell
already has in abundance.

Kind-indexed type families The idea of allowing type functions
to dispatch on kinds is a fairly novel component of this extension.
Work by Morrisett et al. on intensional type analysis [9] included
an operator that dispatched on types, but not kinds. Indeed, the
extension of that work by Trifonov et al. [32] relied on the fact
that kind polymorphism was parametric. In System FC, we have
separated the soundness of the language from the decidability of
type checking [33].

Although we do not yet have many motivating examples of
the use of kind-indexed type families, we still believe that they
have great potential. For example, we can use them to define the
polykinded-types [10] found in Generic Haskell. System F↑C cannot
yet write the polytypic functions that inhabit such types, but we
plan to further extend the language with such support (see §8.5).

Why not full-spectrum dependent types? One might well ask:
why not just use, say, Agda [23] or Coq [3]? What benefit is there in
adding dependent type features to Haskell without going all the way
to a full-spectrum dependently typed language? We see a number
of advantages of our evolutionary approach:

• Type inference. Haskell enjoys robust type inference, even for
top-level terms. Adding full dependent types would severely
complicate matters at best. Promotion, however, requires only
slight enhancements to existing inference mechanisms (§5).

• Phase distinction. Since Haskell types never actually depend
on terms and vice versa, types can be safely erased before
runtime. This is still true for promoted values. Erasure analysis
for full-spectrum languages, on the other hand, is an active area
of research.

• Explicit, strongly typed evidence. This allows us to be cer-
tain that type and kind inference is sound and does not accept
programs that may crash at runtime.

• Simple type checking. System FC, into which GHC desugars
Haskell source code, enjoys a simple, linear-time type checking
algorithm, guided by the presence of explicit coercion terms.
This remains true for our promoted variant. Type checking the
core language for a full-spectrum dependently typed intermedi-
ate language, on the other hand, must take into account a more
complex equivalence on types which includes β-equivalence.

• Optimization. Thanks again to the presence of explicit coer-
cion terms, Haskell’s core language can be aggressively opti-
mized while remaining statically typed.

• Familiarity. Many programmers are already familiar with
Haskell, and it enjoys a large collection of existing libraries
and tools. Modest, backwards-compatible extensions will be
adopted in ways that major, breaking changes cannot.



8. Future work
One of the main driving forces behind the current design of F↑C has
been simplicity. We wanted to make sure we have all the details
solidly in place before introducing any complications. There are,
however, several further directions we would like to explore.

8.1 Promoting functions
If we can promote (some) term-level data constructors to type
constructors, why not promote (some) term-level functions to type-
level functions? We have not done so yet because we already have
a carefully-limited way to define type-level functions, and it seems
awkward to specify exactly which term-level functions should be
promoted. However, the resulting code duplication is irksome, and
there is no difficulty in principle, so we expect to revisit this topic
in the light of experience.

8.2 Generating singleton types
When using promoted types as indices, one quickly comes to desire
the ability to do case analysis on them. Of course, this is not directly
possible, since types are erased before runtime. A well-known tech-
nique for overcoming this limitation is the use of singleton types,
which allow doing case analysis on value-level representatives in
lieu of types (the survey article on programming in Ωmega [28] of-
fers an excellent introduction to this technique). We would like to
avoid this additional source of code duplication by automatically
generating singleton types from datatype declarations.

For instance, consider implementing a function replicate ,
which creates a Vec of a certain (statically determined) length.
This can be accomplished with the help of singleton type SNat:

data SNat :: Nat→ ? where
SZero :: SNat Zero
SSucc :: SNat n → SNat (Succ n)

replicate :: SNat n → a → Vec a n
replicate SZero = VNil
replicate (SSucc n) x = VCons x (replicate n x )

Automatically generating singleton types is not hard [19, 22]. More
interesting would be the design of convenient surface syntax to
completely hide their use, so users could just “pattern match on
types”.

8.3 Promoting primitive datatypes
Another useful extension would be the promotion of primitive
built-in datatypes, such as integers, characters, and strings. For
instance, having promoted string literals as types would allow us to
go well beyond heterogeneous type-level lists to type-level records,
as in the Ur programming language [5].

There are no implementation or theoretical difficulties with sim-
ply promoting primitive datatypes. However, our implementation
does not yet promote primitive datatypes because, to make this fea-
ture truly usable, we would also like to promote primitive oper-
ations on these datatypes (such as integer addition or string con-
catenation) and integrate these operations with type inference and
evidence generation. Some promising work in this direction is Di-
atchki’s recent addition of type-level naturals to GHC.7

8.4 Closed type families
Type families, as currently implemented in GHC, are open [25]: it
is always possible to add more clauses to a type family definition at
any time, as long as they do not overlap with existing clauses. In a
world where the only base kind is ?, this makes sense, since ? itself
is open. However, with the ability to promote closed datatypes to

7 http://hackage.haskell.org/trac/ghc/wiki/TypeNats

kinds, we now have type families which are “naturally” closed. For
example, given a type family Foo with two clauses, Foo Zero = ...
and Foo (Succ n) = ..., it is impossible to add any more well-
kinded clauses without overlap. Could the compiler somehow take
advantage of this knowledge?

8.5 Kind-indexed GADTs
Recall the definition of the Typeable class with a kind-polymorphic
type from §2.5:

class Typeable a where
typeOf :: Proxy a → TypeRep

Notice that typeOf ’s return type, TypeRep, does not mention a . It
would be nicer to have typed TypeReps by using GADTs whose
constructors refine types and kinds, for instance:

data TypeRep (a :: κ) where
RepInt :: TypeRep Int
RepList :: (∀a. TypeRep a → TypeRep [a ])→ TypeRep [ ]

Notice that RepInt must have type TypeRep ? Int in F↑C whereas
RepList returns TypeRep (? → ?) [ ]. However, supporting kind-
indexed GADTs is tricky. Just as GADTs currently introduce type
equalities, these kind-indexed GADTs could introduce kind equal-
ities, an avenue that we are not prepared to take (see the discussion
in §3.4).

On the other hand, there may be just enough machinery already
in F↑C to deal with kind-indexed GADTs in a more primitive fashion
than ordinary GADTs, by employing unifiers for kind equalities,
in the same way that GADTs used to be implemented in pre-FC
times [24]. We plan to explore this direction in the future.
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1972.



[9] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’95, pages 130–141, New York, NY, USA, 1995. ACM.

[10] R. Hinze. Polytypic Values Possess Polykinded Types. In Proceedings
of the 5th International Conference on Mathematics of Program
Construction, MPC ’00, pages 2–27, London, UK, 2000. Springer-
Verlag.

[11] A. J. C. Hurkens. A Simplification of Girard’s Paradox. In
Proceedings of the Second International Conference on Typed
Lambda Calculi and Applications, pages 266–278, London, UK,
1995. Springer-Verlag.

[12] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr,
and S. Zdancewic. Aura: a programming language for authorization
and audit. In Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC,
Canada, September 20-28, 2008, pages 27–38, 2008.
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[15] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class:
extensible generic functions. In Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, ICFP
’05, pages 204–215, New York, NY, USA, 2005. ACM.

[16] D. Licata and R. Harper. Canonicity for 2-dimensional type theory. In
POPL ’12. To appear.

[17] D. R. Licata and R. Harper. Positively dependent types. In PLPV ’09:
Proceedings of the 3rd Workshop on Programming Languages Meets
Program Verification, pages 3–14, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-330-3.

[18] S. Marlow, editor. Haskell 2010 Language Report. 2010. URL
http://www.haskell.org/onlinereport/haskell2010/.

[19] C. McBride. The Strathclyde Haskell Enhancement. URL http:
//personal.cis.strath.ac.uk/~conor/pub/she/.

[20] C. McBride. Kleisli arrows of outrageous fortune. 2011. URL
http://personal.cis.strath.ac.uk/~conor/Kleisli.pdf.

[21] N. P. Mendler. Predicative type universes and primitive recursion. In
Proceedings, Sixth Annual IEEE Symposium on Logic in Computer
Science, 15-18 July, 1991, Amsterdam, The Netherlands, pages 173–
184. IEEE Computer Society, 1991.

[22] S. Monnier and D. Haguenauer. Singleton types here Singleton types
there Singleton Types Everywhere, 2009.

[23] U. Norell. Towards a practical programming language based on
dependent type theory. Chalmers University of Technology, 2007.

[24] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In Proceedings of the
eleventh ACM SIGPLAN international conference on Functional
programming, ICFP ’06, pages 50–61. ACM Press, 2006.

[25] T. Schrijvers, S. Peyton Jones, M. M. T. Chakravarty, and M. Sulz-
mann. Type checking with open type functions. In Proceeding
of the 13th ACM SIGPLAN international conference on Functional
programming, ICFP ’08, pages 51–62. ACM Press, 2008.

[26] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis.
Complete and decidable type inference for GADTs. In Proceedings
of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP ’09, pages 341–352, New York, NY, USA, 2009.
ACM.

[27] T. Sheard. Type-level Computation Using Narrowing in Omega.
Electr. Notes Theor. Comput. Sci., 174(7):105–128, 2007.

[28] T. Sheard and N. Linger. Programming in Omega. In CEFP, pages
158–227, 2007.

[29] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In Proceedings of the
2007 ACM SIGPLAN international workshop on Types in languages
design and implementation, TLDI ’07, pages 53–66. ACM Press,
2007.

[30] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. pages
266–278.

[31] The Coq Team. Coq. URL http://coq.inria.fr.
[32] V. Trifonov, B. Saha, and Z. Shao. Fully Reflexive Intensional Type

Analysis. In Fifth ACM SIGPLAN International Conference on
Functional Programming, pages 82–93. ACM Press, 2000.

[33] S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Gener-
ative type abstraction and type-level computation. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages, POPL ’11, pages 227–240, New York, NY,
USA, 2011. ACM.


