
Generic Programming with Indexed Functors

Andres Löh
Well-Typed LLP

andres@well-typed.com

José Pedro Magalhães
Utrecht University

jpm@cs.uu.nl

Abstract
Much has been said and done about generic programming ap-
proaches in strongly-typed functional languages such as Haskell
and Agda. Different approaches use different techniques and are
better or worse suited for certain uses, depending on design deci-
sions such as generic view, universe size and complexity, etc.

We present a simple and intuitive yet powerful approach to
generic programming in Agda using indexed functors. We show
a universe incorporating fixed points that supports composition,
indexing, and isomorphisms, and generalizes a number of previ-
ous approaches to generic programming with fixed points. Our in-
dexed functors come with a map operation which obeys the functor
laws, and associated recursion morphisms. Albeit expressive, the
universe remains simple enough to allow defining standard recur-
sion schemes as well as decidable equality. As for type-indexed
datatypes, we show how to compute the type of one-hole contexts
and define the generic zipper.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Algorithms, Languages

1. Introduction
Datatype-generic programming is a form of abstraction that allows
defining a single function over an entire class of datatypes at once.
Common examples are equality and serialisation, both being com-
putations which depend only on the structure of the datatypes for
which they are defined. There are several approaches to generic
programming using different techniques, exploring the trade-off
between complexity and expressiveness.

If the goal is to define functions that work over an entire class
of datatypes, we need to somehow access the underlying structure
of such datatypes. There are many ways to do so, and the choice of
representation has a significant impact:

• it determines which datatypes can be described at all, and hence
be in the domain of generic functions;

• it affects whether it is possible (and if so, how easy it is) to
define certain generic functions on those datatypes.

In this paper, we show a particular approach which is both ele-
gant and powerful. We use Agda, relying on the power of dependent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0861-8/11/09. . . $10.00

types to encode datatypes as a universe of indexed functors. A uni-
verse is an abstract description of types as codes. Codes are then
interpreted as proper types by means of an interpretation function.

Our universe is centered on the notion of an indexed functor. A
normal functor is a type constructor, i.e. of Agda type Set→ Set.
An indexed functor allows an indexed set both as input and as out-
put, where an indexed set is a function mapping a concrete “in-
dex” type to Set. We can then express families of mutually recur-
sive datatypes as a single indexed functor, choosing appropriate
indices. Parameterized datatypes are represented using indices as
well; in this way we treat recursion and parameterization uniformly,
allowing for flexible composition. Similarly to the universes of Al-
tenkirch et al. (2007), we include the fixed-point operator within the
universe, which simplifies code reuse. To allow for easy encapsu-
lation of user-defined datatypes, we encode datatype isomorphisms
in the universe itself.

The result is a universe that is extremely general. In fact,
many earlier approaches such as regular (van Noort et al. 2008),
PolyP (Jansson and Jeuring 1997), and Multirec (Rodriguez Yaku-
shev et al. 2009) can be readily derived from our approach by
parameter instantiation. Unlike Chapman et al. (2010), however,
we do not strive to devise a minimal, self-encoding universe, but
instead prefer a representation which maps naturally to the usual
way of defining a datatype.

An added advantage of working in a dependently typed set-
ting is that properties of generic functions are just generic func-
tions themselves, and can be proved within the same fraemwork.
We show how indexed functors adhere to the functor laws. As ex-
amples of how to work with the universe, we derive the catamor-
phism and other recursion schemes. Along with all the function-
ality that can be defined using the recursive morphisms, we show
that our approach also allows defining functions by direct induction
on the codes, and show decidable equality as an example. Finally,
we present the basic ingredients for navigation of indexed func-
tors using a zipper (Huet 1997), relying on an underlying deriva-
tive (McBride 2001) for the codes of our universe.

The rest of this paper is organized as follows: we start by de-
scribing our universe in Section 2 by demonstrating how to encode
a few representative datatypes. In Section 3 we describe a zipper
for indexed functors as an example of a type-indexed computation
in our universe. Section 4 describes how to prove the functor laws
for the map operation over indexed functors, and Section 5 shows
the definition of decidable equality in our universe. Finally, we con-
clude in Section 6, pointing limitations of our approach and possi-
ble directions for future research.

We assume the reader is familiar with dependently-typed pro-
gramming in Agda. Due to space constraints we do not include an
Agda tutorial in this paper; the reader is referred to Norell (2009)
for an introduction, also including a universe for generic program-
ming.

We provide a full code bundle of our development in http:
//dreixel.net/research/code/gpif.tar.gz.

http://dreixel.net/research/code/gpif.tar.gz
http://dreixel.net/research/code/gpif.tar.gz

2. A universe for indexed functors
If we want to define functions that depend on the structure of
datatypes, we require a way of consistently representing user-
definable datatypes by a small set of primitive types. Operations
defined on the primitives can then be lifted to any other type, pro-
vided we have conversion functions between a user datatype and
its generic representation.

As is common in a dependently-typed setting, we use a universe
construction to encode the representation types: A universe is a
type of codes together with an interpretation function that maps
the codes to types.

The codes of our universe are supposed to describe indexed
functors, and are therefore parameterized over two sets. Intuitively,
these can be thought of as the indices for inputs and outputs of the
type described by the code, so we generally call the first argument I
and the second O. A code II O describes a type that is parameter-
ized over inputs from I and that is itself indexed over O. In many
standard examples, I and O will be instantiated to finite types. We
get a classic functor of type Set→ Set back by instantiating both I
and O with the one-element type >. And if we want a code to rep-
resent a family of n datatypes, we can instantiate O to the type Fin n
that has n elements.

2.1 Basic codes
Since our universe is large, we present it in an incremental fashion,
starting with the base cases:

data _I_ : Set→ Set→ Set1 where
Z : ∀ { I O} → II O
U : ∀ { I O} → II O

The constructor Z is used for empty types, and U for unit types.
Both base codes are polymorphic in the input and output indices.

Disjoint sum, product and composition are used for combining
codes:

⊕ : ∀ { I O} → I I O→ II O→ II O
⊗ : ∀ { I O} → I I O→ II O→ II O
} : ∀ { I M O}→MI O→ IIM→ II O

Sum (_⊕_) and product (_⊗_) combine two codes with input I and
output O to produce an IIO. For a composition F } G, we require
the codes to combine to be compatible: the output of code G needs
to be the same as the input of the code F (namely M). We connect
the output of G to the input of F, and produce a code with the input
of G and the output of F.

As part of the universe we define an interpretation function,
which establishes the relation between codes and Agda types. A
code II O is interpreted as an indexed functor I . O, which in turn
is a function from a set indexed by I to a set indexed by O:

Indexed : Set→ Set1
Indexed I = I→ Set

. : Set→ Set→ Set1
I . O = Indexed I→ Indexed O

When defining the actual interpretation function J_K, we thus
have a parameter r : I→ Set describing all the input sets and a
parameter o : O selecting a particular output index available:

J_K : ∀ { I O}→ II O→ I . O
J Z K r o = ⊥
J U K r o = >
J F ⊕ G K r o = J F K r o + J G K r o
J F ⊗ G K r o = J F K r o× J G K r o
J F } G K r o = (J F K ◦ J G K) r o

We interpret Z as the empty type ⊥, and U as the singleton type >
with constructor tt.

Each of the three constructors for sum, product and composition
is interpreted as the corresponding concept on (lifted) Agda types.
For sums, we use the _+_ type with constructors inl and inr.
For products, we use the _×_ type with constructor _ , _. For
composition, we use ordinary function composition _◦_ on the
interpretations.

With this part of the universe in place we can already encode
some simple, non-recursive datatypes. Consider the type of boolean
values Bool with constructors true and false:

data Bool : Set where
true : Bool
false : Bool

It is a single, non-indexed datatype, which takes no parameters and
is not recursive. We can encode it as an indexed functor using a type
with zero inhabitants for I and a type with one inhabitant for O:

‘BoolF’ : ⊥I>
‘BoolF’ = U ⊕ U

To convert between the type of booleans and its representation,
we use two functions:

fromBool : ∀ {r o}→ Bool→ J ‘BoolF’ K r o
fromBool true = inl tt
fromBool false = inr tt

toBool : ∀ {r o}→ J ‘BoolF’ K r o→ Bool
toBool (inl tt) = true
toBool (inr tt) = false

2.2 Isomorphisms
Being in a dependently-typed language, we can also provide the
proof that fromBool and toBool indeed form an isomorphism:

isoBool1 : ∀ {b r o}→ toBool {r} {o} (fromBool b)≡ b
isoBool1 {true} = refl
isoBool1 {false} = refl

isoBool2 : ∀ {b r o}→ fromBool {r} {o} (toBool b)≡ b
isoBool2 { inl tt} = refl
isoBool2 { inr tt} = refl

For convenience, we wrap all the above in a single record, which
we reuse later:

infix 3 _'_
record _'_ (A B : Set) : Set where

field
from : A→ B
to : B→ A
iso1 : ∀ {x}→ to (from x)≡ x
iso2 : ∀ {x}→ from (to x)≡ x

The particular instantiation for Bool simply uses the functions we
have defined before:

isoBool : (r : Indexed⊥) (o : >)→ Bool' J ‘BoolF’ K r o
isoBool r o = record {from = fromBool {r} {o}

; to = toBool {r} {o}
; iso1 = isoBool1
; iso2 = isoBool2}

Isomorphisms are useful when we want to view a type as a
different, but equivalent type. We can use isomorphisms to extend
our universe: we may not be able to directly encode a type as an
indexed functor, but it is sufficient if we can encode an isomorphic
type:

Iso : ∀ { I O}→ (C : II O)→ (D : I . O)
→ ((r : Indexed I)→ (o : O)→ D r o' J C K r o)→ II O

The code Iso captures an isomorphism between the interpretation
of a code C and an indexed functor D. This indexed functor D is
used in the interpretation of the code Iso:

J Iso C D e K r o = D r o

Having Iso has two advantages. Firstly, it allows us to have actual
user-defined Agda datatypes in the image of our interpretation
function. For example, we can give a code for the Agda datatype
Bool now:

‘Bool’ : ⊥I>
‘Bool’ = Iso ‘BoolF’ (λ _ _→ Bool) isoBool

Secondly, Iso makes it possible to reuse types that we previously
defined inside more complex definitions, while preserving the orig-
inal code for further generic operations—in Section 2.7 we show an
example of this technique by reusing the code for natural numbers
inside the definition of a simple language.

2.3 Adding fixed points
We cannot yet describe recursive datatypes in our universe of
indexed functors. The standard way to treat recursive datatypes
generically is to add a fixed-point operator that computes the fixed
point of a type described by a code.

Indexed functors, however, have the nice property of being
closed under fixed points: if we have an indexed functor where the
recursive calls come from the same index set as the output, i.e. a
functor O . O, then the fixed point will be of type ⊥ . O. If we
consider a functor with parameters of type I + O . O, with input
indices being either parameters from I, or recursive calls from O,
we can obtain a fixed point of type I . O.

Since the fixed point of indexed functors is another indexed
functor, it is possible and convenient to just add fixed points as
another constructor to our type of codes:

Fix : ∀ { I O}→ (I + O)I O→ II O

As indicated above, the code Fix transforms a code with I+O input
indices and O output indices into a code of type II O.

Of course, we also need a way to actually access inputs:

I : ∀ { I O}→ I → II O

Using I, we can select a particular input index (which, in the light
of Fix, might be either a parameter or a recursive call).

We use a datatype µ with a single constructor 〈_〉 to generate the
interpretation of Fix F from that of F. We know that F : (I+O)IO,
so the first argument to J F K needs to discriminate between param-
eters and recursive occurrences. We use r | µ F r for this purpose,
i.e. for parameters we use r : I→ Set, whereas recursive occur-
rences are interpreted with µ F r : O→ Set:

_ |_ : ∀ { I J}→ Indexed I→ Indexed J→ Indexed (I + J)
(r | s) (inl i) = r i
(r | s) (inr j) = s j

mutual
data µ { I O : Set} (F : (I + O)I O)

(r : Indexed I) (o : O) : Set where
〈_〉 : J F K (r | µ F r) o→ µ F r o

. . .
J Fix F K r o = µ F r o
J I i K r o = r i

The interpretation of I uniformly invokes r for every input index i.

As an example of a datatype with parameters and recursion, we
show how to encode parametric lists. We start by encoding the base
functor of lists:

infixr 6 _::_
data [_] (A : Set) : Set where

[] : [A]
:: : A→ [A]→ [A]

‘ListF’ : (>+>)I>
‘ListF’ = U ⊕ (I (inl tt) ⊗ I (inr tt))

The arguments of _I_ reflect that we are defining one type (output
index >) with two inputs (input index > + >), where one is a
parameter and one is representing the recursive call.

We use a product to encode the arguments to the _::_ construc-
tor. The first argument is an occurrence of the first (and only) pa-
rameter, and the second is a recursive occurrence of the first (and
only) type being defined (namely list).

Using Fix, we can now close the recursive gap in the represen-
tation of lists:

‘List’ : >I>
‘List’ = Fix ‘ListF’

We can confirm that our representation is isomorphic to the
original type by providing conversion functions:

fromList : ∀ {r o}→ [r o]→ J ‘List’ K r o
fromList [] = 〈 inl tt 〉
fromList {o = tt} (x :: xs) = 〈 inr (x , fromList xs) 〉
toList : ∀ {r o}→ J ‘List’ K r o→ [r o]
toList 〈 inl tt 〉 = []
toList {o = tt} 〈 inr (x ,xs) 〉 = x :: toList xs

As before, we can show that the conversion functions really
form an isomorphism—this looks a bit technical, because we have
to explicitly pass some implicit arguments in order to satisfy Agda’s
typechecker, but the isomorphism is entirely trivial:

cong ≡ : {A : Set} {B : Set} {x y : A} (f : A→ B)→
x≡ y→ f x≡ f y

cong ≡ f refl = refl

isoList1 : {r : Indexed>} {o : >} { l : [r o]}→
toList {r} {o} (fromList l)≡ l

isoList1 {r} {tt} {h :: t} =
cong ≡ ((λ x→ h :: x)) (isoList1 {r} {tt} { t})

isoList1 {r} {tt} { []} = refl

isoList2 : {r : Indexed>} {o : >} { l : J ‘List’ K r o}→
fromList (toList l)≡ l

isoList2 {r} {tt} {〈 inl tt 〉} = refl
isoList2 {r} {tt} {〈 inr (h , t) 〉} =

cong ≡ ((λ x→ 〈 inr (h ,x) 〉)) (isoList2 {r} {tt} { t})
isoList : {r : Indexed>} {o : >}→ [r o]' J ‘List’ K r o
isoList {r} = record {from = fromList

; to = toList
; iso1 = isoList1 {r}; iso2 = isoList2}

We will refrain from showing further proofs of isomorphisms in
this paper.

We now redefine ‘List’ to include the isomorphism between List
and Fix ‘ListF’:

‘List’ : >I>
‘List’ = Iso (Fix ‘ListF’) (λ f t→ [f t]) (λ r o→ isoList)

This code makes it possible for us to use actual Agda lists in
generic operations, and explicit applications of the conversion func-
tions toList and fromList are no longer necessary.

Having Fix in the universe (as opposed to using it externally)
has the advantage that codes become more reusable. For example,
we can reuse the code for lists we have just defined while defining
a code for rose trees (Section 2.6), which are the instance of the
common situation where a fixed point is used as the first argument
of a composition. We thus can represent datatypes in our universe
that involve several applications of Fix.

2.4 Mapping for indexed functors
We make the claim that the interpretation of our codes are indexed
functors, but we have yet to show that we can define a map opera-
tion for them.

We are working with indexed sets rather than sets, so we have
to look at arrows between indexed sets, which are index-preserving
functions:

⇒ : ∀ { I}→ Indexed I→ Indexed I→ Set
r⇒ s = ∀ i→ r i→ s i

As usual, map lifts such an indexed-preserving function r⇒ s
between two indexed sets r and s to an indexed-preserving function
J C K r⇒ J C K s on the interpretation of a code C:

map : { I O : Set} {r s : Indexed I}→
(C : II O)→ (r⇒ s)→ (J C K r⇒ J C K s)

Note that by choosing I = O = >, the indexed sets become iso-
morphic to sets, and the index-preserving function become isomor-
phic to functions between two sets, i.e. we specialize to the well-
known Haskell-like setting of functors of type Set→ Set.

Let us look at the implementation of map:

map Z f o ()
map U f o tt = tt
map (I i) f o x = f i x

If we expand the type of map, we see that it takes four ex-
plicit arguments: The first two are the code and the indexed-
preserving function f. The function returned by map can be ex-
panded to ∀ o→ J C K r o→ J C K s o, explaining the remaining
two arguments: an arbitrary output index o, and an element of the
interpreted code.

The interpretation of code Z has no inhabitants, so we do not
have to give an implementation. For U, we receive a value of
type >, which must be tt, and in particular does not contain any
elements, so we return tt unchanged. On I we get an element x
corresponding to input index i, which we supply to the function f at
index i.

For sums and products, we keep the structure, pushing the map
inside. Composition is handled with a nested map, and for fixed
points we adapt the function argument to take into account the
two different types of indices: using an auxiliary _ ‖ _ operator
to merge natural transformations, left-tagged indices (parameters)
are mapped with f, whereas right-tagged indices (recursive occur-
rences) are mapped recursively:

map (F ⊕ G) f o (inl x) = inl (map F f o x)
map (F ⊕ G) f o (inr y) = inr (map G f o y)
map (F ⊗ G) f o (x ,y) = map F f o x ,map G f o y
map (F } G) f o x = map F (map G f) o x
map (Fix F) f o 〈 x 〉 = 〈map F (f ‖map (Fix F) f) o x 〉

Finally, mapping over isomorphisms requires judicious use of the
conversion functions:

map {r = r} {s = s} (Iso C D e) f o x with (e r o ,e s o)
. . . | ep1 ,ep2 = _'_.to ep2 (map C f o (_'_.from ep1 x))

As an example, let us look at the specific instance of map on
lists. We can obtain that simply by specializing the types:

↑ : ∀ {A B : Set}→ (A→ B)→ (const A⇒ const B)
↑ f i x = f x

mapList : ∀ {A B}→ (A→ B)→ [A]→ [B]
mapList f = map ‘List’ (↑ f) tt

We are in the situation described above, where both index sets are
instantiated to >. The lifting operator ↑ witnesses one half of the
isomorphism between A→ B and const A⇒ const B. Note that we
do not need to apply any conversion functions, since ‘List’ contains
the isomorphism between lists and their representation. We discuss
how to prove the functor laws for map in Section 4.

For now, we can confirm that mapList works as expected on a
simple example:

mapListExample : mapList suc (1 :: 2 :: [])≡ (2 :: 3 :: [])
mapListExample = refl

In this example, we use the standard type for naturals N with
constructors zero and suc, and the propositional equality type _≡_
with constructor refl.

2.5 Recursion schemes
Equipped with a mapping function for indexed functors, we can
define basic recursive morphisms in a conventional fashion:

id⇒ : { I : Set} {r : Indexed I}→ r⇒ r
id⇒ i = id

cata : { I O : Set} {r : Indexed I} {s : Indexed O}→
(C : (I + O)I O)→
(J C K (r | s)⇒ s)→ J Fix C K r⇒ s

cata C ϕ o 〈 x 〉 = ϕ o (map C (id⇒ ‖ cata C ϕ) o x)

The catamorphism on indexed functors is not much different from
the standard functorial catamorphism. The important difference is
the handling of left and right indices differently: since we wish to
traverse over the structure only, we apply the identity on indexed
sets id⇒ to parameters, and recursively apply cata to right-tagged
indices.

As an example, let us consider lists again and see how the foldr
function can be expressed in terms of the generic catamorphism:

O : { I J R : Set}→ (I→ R)→ (J→ R)→ (I + J)→ R
(r O s) (inl i) = r i
(r O s) (inr j) = s j

up : {F : Indexed>}→ F tt→ (i : >)→ F i
up x tt = x

T : Set→ Indexed>
T A tt = A

foldr : {A R : Set}→ (A→ R→ R)→ R→ [A]→ R
foldr {A} {R} c n xs =

cata {r = T A} {s = T R} ‘ListF’ ϕ tt (fromList xs)
where ϕ = up (const n O uncurry c)

The function foldr invokes cata. The parameters are instantiated
with T A, i.e. there is a single parameter and it is A, and the recur-
sive slots are instantiated with T R, i.e. there is a single recursive
slot and it will be transformed into an R. We invoke the catamor-
phism on ‘ListF’, which means we have to manually apply the co-
ercion fromList on the final argument to get from the user-defined
list type to the isomorphic structural representation. Ultimately we
are interested in the single output index tt that lists provide.

This leaves the algebra ϕ . The generic catamorphism expects
something of type J‘ListF’ K (r | s)⇒ s, which can be reduced in
this context to (i : >)→>+ A×R→ R i. On the other hand, foldr
takes the nil- and cons- component separately, which we can join
together with _O_ to obtain something of type > + A × R→ R. It
turns out that up provides the desired generalization of the type.

We can define the length of a list using foldr and check that it
works as expected:

length : ∀ {A}→ [A]→ N
length = foldr (const suc) zero

lengthExample : length (1 :: 0 :: [])≡ 2
lengthExample = refl

Many other recursive patterns can be defined similarly. We show
the definitions of ana and hylo:

ana : { I O : Set} {r : Indexed I} {s : Indexed O}→
(C : (I + O)I O)→
(s⇒ J C K (r | s))→ s⇒ J Fix C K r

ana C ψ o x = 〈map C (id⇒ ‖ ana C ψ) o (ψ o x) 〉
hylo : { I O : Set} {r : Indexed I} {s t : Indexed O}→

(C : (I + O)I O)→
(J C K (r | t)⇒ t)→ (s⇒ J C K (r | s))→ s⇒ t

hylo C ϕ ψ o x = ϕ o (map C (id⇒ ‖ hylo C ϕ ψ) o (ψ o x))

In our code bundle we also provide para- and apomorphisms.

2.6 Using composition
To show how to use composition we encode the type of rose trees:

data Rose (A : Set) : Set where
fork : A→ [Rose A]→ Rose A

The second argument to fork, of type [Rose A], is encoded using
composition:

‘RoseF’ : (>+>)I>
‘RoseF’ = I (inl tt) ⊗ (‘List’ } I (inr tt))

‘Rose’ : >I>
‘Rose’ = Fix ‘RoseF’

Note that the first argument of composition here is ‘List’, not ‘ListF’.
We thus really make use of the fact that fixed points are part of our
universe and can appear everywhere within a code. We also show
that codes can be reused in the definitions of other codes.

The conversion functions for rose trees are:

fromRose : {r : Indexed>} {o : >}→ Rose (r o)→
J ‘Rose’ K r o

fromRose {o = tt} (fork x xs) =
〈 x ,map ‘List’ (λ i→ fromRose) tt (fromList xs) 〉

toRose : {r : Indexed>} {o : >}→ J ‘Rose’ K r o→
Rose (r o)

toRose {o = tt} 〈 x ,xs 〉 =
fork x (toList (map ‘List’ (λ i→ toRose) tt xs))

The use of composition in the code implies the use of map in
the conversion functions, since we have to map the conversion
over the elements of the list. This also means that to provide
the isomorphism proofs for Rose we need to have proofs for the
behavior of map. We describe these in detail in Section 4.

2.7 Parametrized families of datatypes
To explore the full power of abstraction of indexed functors, we
show an example with a family of mutually recursive parametrized
datatypes. Our family represents the Abstract Syntax Tree (AST)
of a simple language:

mutual
data Expr (A : Set) : Set where

econst : N → Expr A
add : Expr A→ Expr A→ Expr A
evar : A → Expr A

elet : Decl A → Expr A→ Expr A

data Decl (A : Set) : Set where
assign : A → Expr A→ Decl A
seq : Decl A → Decl A → Decl A

In our AST, an expression can be a natural number constant, the
addition of two expressions, a variable, or a let declaration. Decla-
rations are either an assignment of an expression to a variable, or a
sequence of declarations.

We can easily encode each of the datatypes as indexed functors.
We start by defining a type synonym for the output indices, for
convenience:

AST : Set
AST = >+>
expr : AST
expr = inl tt

decl : AST
decl = inr tt

Since we are defining two datatypes, we use a type with two
inhabitants, namely > + >. Note that any other two-element type
such as Bool or Fin 2 would also do. We define expr and decl as
shorthands for each of the indices. We can now encode each of the
types:

‘ExprF’ : (>+ AST)I AST
‘ExprF’ = ?0

⊕ I (inr expr) ⊗ I (inr expr)
⊕ I (inl tt)
⊕ I (inr decl) ⊗ I (inr expr)

‘DeclF’ : (>+ AST)I AST
‘DeclF’ = I (inl tt) ⊗ I (inr expr)

⊕ I (inr decl) ⊗ I (inr decl)

Our codes have type (>+AST)IAST, since we have one param-
eter (the type of the variables) and two datatypes in the family. For
expressions, we want to reuse the ‘N’ code for N we have defined
previously. However, ‘N’ has type ⊥I>, which is not compatible
with the current code, so we cannot simply enter ‘N’ in the ?0 hole.

We need some form of re-indexing operation to plug indexed
functors within each other. Therefore we add the following opera-
tion to our universe:

1%_ : ∀ { I I’ O O’} → I’I O’→
(I’→ I)→ (O→ O’)→ I I O

Now we can fill the hole ?0 with the expression ‘N’ 1 (λ ()) %
const tt. The interpretation of this new code is relatively simple.

For the input, we compose the re-indexing function with r, and for
the output we apply the function to the output index:

J F 1 f % g K r o = J F K (r ◦ f) (g o)

Mapping over a re-indexed code is also straightforward:

map (F 1 g % h) f o x = map F (f ◦ g) (h o) x

Finally, we can now join the two codes for expressions and
declarations into a single code for the whole family. For this we
will need an additional code to specify that we are defining one
particular output index:

! : ∀ { I O}→ O→ II O

The code ! is parameterized by a particular output index. Its inter-
pretation introduces the constraint that the argument index should
be the same as the output index we select when interpreting:

J ! o’ K r o = o≡ o’

Its usefulness becomes clear when combining the codes for the
AST family:

‘ASTF’ : (>+ AST)I AST
‘ASTF’ = ! expr ⊗ ‘ExprF’

⊕ ! decl ⊗ ‘DeclF’

‘AST’ : >I AST
‘AST’ = Fix ‘ASTF’

In ‘ASTF’ (the code for the family before closing the fixed point),
we encode either an expression or a declaration, each coupled
with an equality proof that forces the output index to match the
datatype we are defining. If we now select the expr index from
the interpretation of ‘ASTF’, then ! decl yields an uninhabited type,
whereas ! expr yields a trivial equality, thereby ensuring that only
‘ExprF’ corresponds to the structure in this case. If we select decl
in turn, then only ‘DeclF’ contributes to the structure.

We can now define the conversion functions between the origi-
nal datatypes and the representation:

mutual
toExpr : {r : >→ Set}→ J ‘AST’ K r expr→ Expr (r tt)
toExpr 〈 inl (refl , inl x) 〉 = econst x
toExpr 〈 inl (refl , inr (inl (x ,y))) 〉 = add (toExpr x)

(toExpr y)
toExpr 〈 inl (refl , inr (inr (inl x))) 〉 = evar x
toExpr 〈 inl (refl , inr (inr (inr (d ,e)))) 〉 = elet (toDecl d)

(toExpr e)
toExpr 〈 inr (() ,_) 〉
toDecl : {r : >→ Set}→ J ‘AST’ K r decl→ Decl (r tt)
toDecl 〈 inl (() ,_) 〉
toDecl 〈 inr (refl , inl (x ,e)) 〉 = assign x (toExpr e)
toDecl 〈 inr (refl , inr (d1 ,d2)) 〉 = seq (toDecl d1)

(toDecl d2)

The important difference from the previous examples is that now
we have absurd patterns. For instance, in toExpr we have to pro-
duce an Expr, so the generic value starting with inr is impossible,
since there is no inhabitant of the type expr ≡ decl. Dually, in the
conversion from the original type into the generic type, these proofs
have to be supplied:

mutual
fromExpr : {r : >→ Set}→ Expr (r tt)→

J ‘AST’ K r expr
fromExpr (econst x) = 〈 inl (refl , inl x) 〉
fromExpr (add x y) =
〈 inl (refl , inr (inl (fromExpr x , fromExpr y))) 〉

fromExpr (evar x) = 〈 inl (refl , inr (inr (inl x))) 〉
fromExpr (elet d e) =
〈 inl (refl , inr (inr (inr (fromDecl d , fromExpr e)))) 〉

fromDecl : {r : >→ Set}→ Decl (r tt)→
J ‘AST’ K r decl

fromDecl (assign x e) = 〈 inr (refl , inl (x , fromExpr e)) 〉
fromDecl (seq d1 d2) =
〈 inr (refl , inr (fromDecl d1 , fromDecl d2)) 〉

At this stage the proofs are trivial to produce (refl), since we know
exactly the type of the index.

2.8 Arbitrarily indexed datatypes
The index types of a functor need not be finite types. Consider the
following datatype describing lists of a fixed length (vectors):

infixr 5 _::_
data Vec (A : Set) : N→ Set where

[] : Vec A zero
:: : {n : N}→ A→ Vec A n→ Vec A (suc n)

The type Vec is indexed by the type of natural numbers N. In fact,
for a given type A, Vec A defines a family of sets: Vec A zero
(which contains only the empty list), Vec A (suc zero) (all possible
singleton lists), and so on. As such, we can see Vec as a code with
one input parameter (the type A) and N output parameters:

VecF : N→ (>+ N)I N
VecF zero = ! zero
VecF (suc n) = ! (suc n) ⊗ I (inl tt) ⊗ I (inr n)

Note, however, that we need to parameterize VecF by a natural
number, since the code depends on the particular value of the index.
In particular, a vector of length suc n is an element together with a
vector of length n. Other than in the case for the abstract syntax
trees, we cannot simply sum up the codes for all the different
choices of output index, because there are infinitely many of them.
Therefore, we need yet another code in our universe:

Σ : ∀ { I O} {C : ⊥I>}→
(J C K (λ _→>) tt→ II O)→ II O

The code Σ introduces an existential datatype:

data ∃ {A : Set} (B : A→ Set) : Set where
some : ∀ {x}→ B x→∃ B

J Σ f K r o = ∃ (λ i→ J f i K r o)

Note that Σ is parameterized by a function f that takes values to
codes. Arguments of f are supposed to be indices, but we would
like them to be described by codes again, since that makes it easier
to define generic functions over the universe. Therefore, we make
a compromise and choose a code for a single unparameterized
datatype ⊥I> rather than an arbitrary Set—for more discussion,
see Section 2.10.

To create a value of type J Σ f K we need a specific witness i to
obtain a code from f. When using a value of type J Σ f K, we can
access the index stored in the existential.

Here is the map function for Σ:

map (Σ g) f o (some { i} x) = some (map (g i) f o x)

Using Σ, we can finalize the encoding of Vec:

‘Vec’ : >I N
‘Vec’ = Fix (Σ {C = ‘N’} VecF)

We make use of the fact that we already have a code ‘N’ for our
index type of natural numbers.

Finally, we can provide the conversion functions. We need to
pattern-match on the implicit natural number to be able to provide
it as existential evidence in fromVec’, and to be able to produce the
right constructor in toVec’:

fromVec : ∀ {n r}→ Vec (r tt) n→ J ‘Vec’ K r n
fromVec {n = zero} [] = 〈 some {x = zero} refl 〉
fromVec {n = suc m} (h :: t) = 〈 some {x = suc m}

(refl ,(h , fromVec t)) 〉
toVec : ∀ {n r}→ J ‘Vec’ K r n→ Vec (r tt) n
toVec 〈 some {zero} refl 〉 = []
toVec 〈 some {suc n} (refl ,(h , t)) 〉 = h :: toVec t

2.9 Nested datatypes
Nested datatypes (Bird and Meertens 1998) can be encoded in
Agda using indexed datatypes. Consider the type of perfect binary
trees:

data Perfect (A : Set) : {n : N}→ Set where
split : {n : N}→ Perfect A {n} × Perfect A {n}→

Perfect A {suc n}
leaf : A→ Perfect A {zero}

Perfect trees are indexed over the naturals. A perfect tree is either a
leaf, which has depth zero, or a split-node, which has depth suc n
and contains two subtrees of depth n each.

In Haskell, this type is typically encoded by changing the pa-
rameters of the type in the return type of the constructors: split
would have return type Perfect (Pair A), for some suitable Pair
type. We can define Perfect’ as such a nested datatype in Agda,
too:

data Pair (A : Set) : Set where
pair : A→ A→ Pair A

data Perfect’ : (A : Set)→ Set1 where
split : (A : Set) → Perfect’ (Pair A)
leaf : {A : Set}→ A→ Perfect’ A

Now, Perfect’ is isomorphic to a dependent pair of a natural number
n and an element of Perfect {n}.

We can therefore reduce the problem of encoding Perfect’ to
the problem of encoding Perfect, which in turn can be done very
similar as the encoding of vectors show in Section 2.8:

PerfectF : N→ (>+ N)I N
PerfectF (zero) = ! zero ⊗ I (inl tt)
PerfectF (suc n) = ! (suc n) ⊗ I (inr n) ⊗ I (inr n)

‘PerfectF’ : (>+ N)I N
‘PerfectF’ = Σ {C = ‘N’} PerfectF

‘Perfect’ : >I N
‘Perfect’ = Fix ‘PerfectF’

We omit the embedding-projection pair as it provides no new in-
sights.

2.10 Summary and discussion
At this point, we are at the end of discussing how various sorts of
datatypes can be encoded in our universe, and we have presented
all the constructors we need for our type of codes. For reference,
we show the backbone of our approach in Figure 1: the universe,
its interpretation, and the map function.

Naturally, there are several variations possible of our approach,
and our universe is not the only useful spot in this part of the design
space. We will now briefly discuss a number of choices we have
made.

Perhaps most notably, we have avoided the inclusion of arbitrary
constants of the form

K : ∀ { I O}→ Set→ II O

There are two main reasons why one might want to have constants
in universes. One is to be able to refer to user-defined datatypes.
We can do this via Iso, as long as the user-defined datatypes can
be isomorphically represented by a code. The other reason is to be
able to include abstract base types (say, floating point numbers), for
which it is difficult to give a structural representation.

Adding constants, however, introduces problems as well. While
map is trivial to define for constants—they are just ignored—most
other functions, such as e.g. decidable equality, become impossible
to define in the presence of arbitrary constants. Additional assump-
tions (such as that the constants being use admit decidable equality
themselves) must usually be made, and it is impossible to predict
in advance all the constraints necessary when defining a K code.

A similar problem guides our rather pragmatic choice when
defining Σ. There are at least two other potential definitions for Σ:

Σ1 : ∀ { I O}→ Set→ II O

data _I_ : Set→ Set→ Set1 where
Z : ∀ { I O}→ II O
U : ∀ { I O}→ II O

I : ∀ { I O}→ I → II O
! : ∀ { I O}→ O→ II O

⊕ : ∀ { I O} → I I O→ II O→ II O
⊗ : ∀ { I O} → I I O→ II O→ II O
} : ∀ { I M O}→MI O→ IIM→ II O

1%_ : ∀ { I I’ O O’}→ I’I O’→
(I’→ I)→ (O→ O’)→ II O

Fix : ∀ { I O}→ (I + O)I O→ II O

Σ : ∀ { I O}→ {C : ⊥I>}→
(J C K (λ _→>) tt→ II O)→ II O

Iso : ∀ { I O}→ (C : II O)→ (D : I . O)→
((r : Indexed I)→ (o : O)→ D r o' J C K r o)→
II O

data µ { I O : Set} (F : (I + O)I O)
(r : Indexed I) (o : O) : Set where

〈_〉 : J F K (r | µ F r) o→ µ F r o

J_K : ∀ { I O}→ II O→ I . O
J Z K r o = ⊥
J U K r o = >
J I i K r o = r i
J F 1 f % g K r o = J F K (r ◦ f) (g o)
J F ⊕ G K r o = J F K r o + J G K r o
J F ⊗ G K r o = J F K r o× J G K r o
J F } G K r o = J F K (J G K r) o
J Fix F K r o = µ F r o
J ! o’ K r o = o≡ o’
J Σ f K r o = ∃ (λ i→ J f i K r o)
J Iso C D e K r o = D r o

map : { I O : Set} {r s : Indexed I} (C : II O)→
(r⇒ s)→ (J C K r⇒ J C K s)

map Z f o ()
map U f o x = x
map (I i) f o x = f i x
map (F ⊕ G) f o (inl x) = inl (map F f o x)
map (F ⊕ G) f o (inr y) = inr (map G f o y)
map (F ⊗ G) f o (x ,y) = map F f o x ,map G f o y
map (F 1 g % h) f o x = map F (f ◦ g) (h o) x
map (F } G) f o x = map F (map G f) o x
map (! o’) f o x = x
map (Σ g) f o (some { i} x) = some (map (g i) f o x)

map (Fix F) f o 〈 x 〉 = 〈map F (f ‖map (Fix F) f) o x 〉
map {r = r} {s = s} (Iso C D e) f o x with (e r o ,e s o)
. . . | (ep1 ,ep2) = _'_.to ep2 (map C f o (_'_.from ep1 x))

Figure 1. The universe, its interpretation, and mapping

Σ2 : ∀ { I O I’ O’ s o’} {C : I’I O’}→
(J C K s o’→ I’I O’)→ II O

In the first case, we allow an arbitrary Set as index type. This,
however, leads to problems with decidable equality (Morris 2007,
Section 3.3), because in order to compare two existential pairs for

equality we have to compare the indices. Restricting the indices to
representable types guarantees we can easily compare them. The
second variant is more general than our current Σ, abstracting from
a code with any input and output indices. However, this makes the
interpretration depend on additional parameters s and o’, which we
are unable to produce, in general. In our Σ we avoid this problem
by setting I’ to ⊥ and O’ to >, so that s is trivially λ () and o’ is tt.
Our Σ encodes indexing over a single unparametrised datatype.

In general, many constructs in our universe (such as reindexing)
could be slightly generalized or more restricted, always balancing
the ease of representing certain datatypes against the ease of defin-
ing certain datatype-generic functions. We believe that our universe
serves rather well in practice.

Furthermore, it is interesting to note that several other libraries
for datatype-generic programming with fixed points can be ob-
tained from ours by instantiating the input and output indices ap-
propriately. The regular library of Van Noort et al. (2008) con-
siders functors defining single datatypes without parameters. This
corresponds to instantiating the input index to ⊥ + > (no param-
eters, one recursive slot) and the output index to >, and allowing
fixed points only on the outside, of type ⊥+>I>→⊥I>.

Adding one parameter brings us to the realm of PolyP (Jansson
and Jeuring 1997). PolyP works with fixed points of bifunctors,
and the kind of the fixed-point operator used in PolyP corresponds
exactly to the type >+>I>→>I>, i.e. taking a bifunctor to
a functor. Note also that PolyP furthermore allows a limited form
of composition where the left operand is a fixed point of a bifunctor
(i.e. of type > I >), and the right operand is a bifunctor (of type
>+>I>).

Multirec (Rodriguez Yakushev et al. 2009) supports any finite
number n of mutually recursive datatypes without parameters; that
corresponds to fixed points of type⊥+ Fin nI Fin n→⊥I Fin n.

Our library thus generalizes all of the above libraries. It allows
arbitrarily many mutually-recursive datatypes with arbitrarily many
parameters, and it allows non-finite index types. In the remainder
of the paper we provide further evidence of the usefulness of the
universe presented by showing a number of applications.

3. A zipper for indexed functors
Along with defining generic functions in our universe, we can also
define type-indexed datatypes (Hinze et al. 2002): types defined
generically in the universe of representations. A frequent exam-
ple is the type of one-hole contexts, described for regular types
by McBride (2001), and for mutually recursive datatypes by Ro-
driguez Yakushev et al. (2009), with application to the zipper (Huet
1997).

Here, we revisit the zipper in the context of our universe, start-
ing with the type-indexed datatype of one-hole contexts, and pro-
ceeding to the navigation functions.

3.1 Generic contexts
The one-hole context of an indexed functor is the type of values
where exactly one input position is replaced by a hole. The idea is
that we can then split an indexed functor into an input value and its
context. Later, we can identify a position in a datatype by keeping
a stack of one-hole contexts that give us a path from the subtree in
focus up to the root of the entire structure.

We define Ctx as another interpretation function for our uni-
verse: it takes a code and the input index indicating what kind of
position we want to replace by a hole, and it returns an indexed
functor again:

Ctx : { I O : Set}→ II O→ I→ I . O
Ctx Z i r o = ⊥
Ctx U i r o = ⊥

Ctx (! o’) i r o = ⊥
Ctx (I i’) i r o = i≡ i’

For the void, unit, and tag types there are no possible holes, so the
context is the empty datatype. For I, we have a hole if and only
if the index for the hole matches the index we recurse on. If there
is a hole, we want the context to be isomorphic to the unit type,
otherwise it should be isomorphic to the empty type. An equality
type of i and i’ has the desired property.

For a re-indexed code we store proofs of the existence of the
new indices together with the reindexed context:

Ctx (F 1 f % g) i r o = ∃ (λ i’→∃ (λ o’→
f i’≡ i× g o≡ o’× Ctx F i’ (r ◦ f) o’))

As described by McBride (2001), computing the one-hole con-
text of a polynomial functor corresponds to computing the formal
derivative. This correspondence motivates the definition for sum,
product and composition. Notably, the context for a composition
follows the chain rule:

Ctx (F ⊕ G) i r o = Ctx F i r o + Ctx G i r o
Ctx (F ⊗ G) i r o = Ctx F i r o× J G K r o + J F K r o× Ctx G i r o
Ctx (F } G) i r o = ∃ (λ m→ Ctx F m (J G K r) o× Ctx G i r m)

The context of a Σ f is the context of the resulting code f i’, for
some appropriate index i’. The context of an Iso is the context of the
inner code:

Ctx (Σ f) i r o = ∃ (λ i’→ Ctx (f i’) i r o)
Ctx (Iso C D e) i r o = Ctx C i r o

The context of a fixed point is more intricate. Previous zippers
(such as that of the Multirec library) have not directly considered
the context for a fixed point, since these were outside the universe.
If we are interested in positions of an index i within a structure
that is a fixed point, we must keep in mind that there can be many
such positions, and they can be located deep down in the recursive
structure. A Fix F is a layered tree of F structures. When we finally
find an i, we must therefore be able to give an F-context for i for
the layer in which the input actually occurs. Now F actually has
more inputs than Fix F, so the original index i corresponds to the
index inl i for F. We then need a path from the layer where the
hole is back to the top. To store this path, we define a datatype of
context-stacks Ctxs. This stack consists of yet more F-contexts, but
each of the holes in these F-context must correspond to a recursive
occurrence, i.e., an index marked by inr:

Ctx (Fix F) i r o = ∃ (λ m→ Ctx F (inl i) (r | µ F r) m
× Ctxs F m r o)

data Ctxs { I O : Set} (F : (I + O)I O) (i : O) (r : Indexed I)
: Indexed O where

empty : Ctxs F i r i
push : {m o : O}→ Ctx F (inr i) (r | µ F r) m→

Ctxs F m r o→ Ctxs F i r o

Note that the stack of contexts Ctxs keeps track of two output
indices, just like a single context Ctx. A value of type Ctxs F i r o
denotes a stack of contexts for a code F, focused on a hole with type
index i, on an expression of type index o. This stack is later reused
in the higher-level navigation functions (Section 3.4).

3.2 Plugging holes in contexts
A basic operation on contexts is to replace the hole by a value of
the correct type; this is called “plugging”. Its type is unsurprising:
given a code C, a context on C with hole of type index i, and
a value of this same index, plug returns the plugged value as an
interpretation of C:

plug : { I O : Set} {r : Indexed I} { i : I} {o : O}→
(C : II O)→ Ctx C i r o→ r i→ J C K r o

Plugging is not defined for the codes with an empty context
type. For I, pattern-matching on the context gives us a proof that
the value to plug has the right type, so we return it:

plug Z () r
plug U () r
plug (! o) () r
plug (I i) refl r = r

Re-indexing proceeds plugging recursively, after matching the
equality proofs:

plug (F 1 f % g) (some (some (refl , refl ,c))) r = plug F c r

Plugging on a sum proceeds recursively on the alternatives. Plug-
ging on a product has two alternatives, depending on whether the
hole lies on the first or on the second component. Plugging on a
composition F } G proceeds as follows: we obtain two contexts,
an F-context c with a G-shaped hole, and a G-context d with a hole
of the type that we want to plug in. So we plug r into d, and the
resulting G is then plugged into c.

plug (F ⊕ G) (inl c) r = inl (plug F c r)
plug (F ⊕ G) (inr c) r = inr (plug G c r)

plug (F ⊗ G) (inl (c ,g)) r = plug F c r ,g
plug (F ⊗ G) (inr (f , c)) r = f ,plug G c r

plug (F } G) (some (c ,d)) r = plug F c (plug G d r)

Plugging into a fixed-point structure is somewhat similar to the
case of composition, only that instead of two layers, we now deal
with an arbitrary number of layers given by the stack. We can plug
our r into the first context c, and then we unwind the stack using an
auxiliary function unw. Once the stack is empty we are at the top
and done. Otherwise, we proceed recursively upwards, plugging
each level as we go:

plug {r = s} {o = o} (Fix F) (some {m} (c ,cs)) r =
unw m cs 〈 plug F c r 〉 where

unw : ∀m→ Ctxs F m s o→ J Fix F K s m→ J Fix F K s o
unw .o empty x = x
unw m (push {o} c cs) x = unw o cs 〈 plug F c x 〉

Finally, plugging on Σ proceeds recursively, using the code as-
sociated with the index packed in the context. For isomorphisms we
proceed recursively on the new code and apply the to conversion
function to the resulting value:

plug (Σ f) (some { i} c) r = some (plug (f i) c r)

plug {r = s} {o = o} (Iso C D e) x r with e s o
plug {o = o} (Iso C D e) x r | ep = _'_.to ep (plug C x r)

3.3 Primitive navigation functions: first and next

With plug we can basically move up in the zipper: after plugging a
hole we are left with a value of the parent type. To move down, we
need to be able to split a value into its first child and the rest. This
is the task of first:

first : { I O : Set} {r : Indexed I} {o : O} {R : Set}→
(C : II O)→ ((i : I)→ r i→ Ctx C i r o→Maybe R)→
J C K r o→Maybe R

We write first in continuation-passing style. One should read it as
a function taking a value and returning a context with a hole at
the first (i.e. leftmost) possible position, the value previously at
that position and its index. These are the three arguments to the
continuation function. Since not all values have children, we might

not be able to return a new context, so we wrap the result in a
Maybe. Note that first (and not the caller) picks the index of the
hole according to the first input that it can find.

There are no values of void type, so that case is impossible. For
unit and tag types, there are no elements, so the split fails:

first Z k ()
first U k x = nothing
first (! o) k x = nothing

For I there is exactly one child, which we return by invoking the
continuation:

first (I i) k x = k i x refl

For re-indexing and sums we proceed recursively, after adapting
the continuation function to the new indices and context appropri-
ately:

first (F 1 f % g) k x =
first F (λ i’ r c→ k (f i’) r (some (some (refl ,(refl ,c))))) x

first (F ⊕ G) k (inl x) = first F (λ i r c→ k i r (inl c)) x
first (F ⊕ G) k (inr x) = first G (λ i r c→ k i r (inr c)) x

On a product we have a choice. We first try the first component,
and only in case of failure (through plusMaybe) we try the second:

first (F ⊗ G) k (x ,y) =
plusMaybe (first F (λ i r c→ k i r (inl (c ,y))) x)

(first G (λ i r c→ k i r (inr (x ,c))) y)

Composition follows the nested structure: we first split the outer
structure, and if that is successful, we call first again on the ob-
tained inner structure:

first (F } G) k x = first F (λ m s c→
first G (λ i r d→ k i r (some (c ,d))) s) x

Fixed points require more care. We use two mutually-recursive
functions to handle the possibility of having to navigate deeper into
recursive structures until we find an element, building a stack of
contexts as we go. Note that the type of input indices changes once
we go inside a fixed point. If we obtain a split on an inl-marked
value, then that is an input index of the outer structure, so we
are done. If we get a split on an inr-marked value, we have hit a
recursive occurrence. We then descend into that by calling fstFix
again, and retain the current layer on the context stack:

first { I} {O} {r} {o} {R} (Fix F) k x = fstFix x empty where
mutual

fstFix : {m : O}→ µ F r m→ Ctxs F m r o→Maybe R
fstFix 〈 x 〉 cs = first F (contFix cs) x

contFix : {m : O}→ Ctxs F m r o→ (i : I + O)→
(r | µ F r) i→ Ctx F i (r | µ F r) m→Maybe R

contFix cs (inl i) r c = k i r (some (c ,cs))
contFix cs (inr i) r c = fstFix r (push c cs)

As usual, splitting on a Σ proceeds recursively, and on isomor-
phisms we apply conversion functions as necessary:

first (Σ f) k (some { i’} y) =
first (f i’) (λ i r c→ k i r (some c)) y

first {r = r} {o = o} (Iso C D e) k x with e r o
first (Iso C D e) k x | ep = first C k (_'_.from ep x)

Another primitive navigation function is next, which, given a
current context and an element which fits in the context, tries to
move the context to the next element to the right, producing a new
context and an element of a compatible (and possibly different)
type:

next : { I O : Set} {r : Indexed I} {o : O} {R : Set}→
(C : II O)→
((i : I)→ r i→ Ctx C i r o→Maybe R)→
{ i : I}→ Ctx C i r o→ r i→Maybe R

Its implementation is similar to that of first, so we omit it.

3.4 Derived navigation
Given the primitives plug, first, and next, we are ready to define
high-level navigation functions, entirely hiding the context from
the user.

We are going to define a zipper data structure that enables the
user to navigate through a structure defined by a fixed point on the
outside. We can then efficiently navigate to all the recursive po-
sitions in that structure. Several variations of this approach—such
as a zipper that also allows navigating to parameter positions—are
possible.

While we are traversing a structure, we keep the current state
in a datatype that we call a location. It contains the subtree that is
currently in focus, and a path up to the root of the complete tree.
The path is a stack of one-hole contexts, and we reuse the Ctxs type
from Section 3.1 to hold the stack:

data Loc { I O : Set} (F : (I + O)I O)
(r : Indexed I) (o : O) : Set where

loc : {o’ : O}→ J Fix F K r o’→ Ctxs F o’ r o→ Loc F r o

The high-level navigation functions all have the same type:

Nav : Set1
Nav = ∀ { I O} {F : (I + O)I O} {r : Indexed I} {o : O}
→ Loc F r o→Maybe (Loc F r o)

Given a location, we might be able to move to a new location,
keeping the same code, interpretation for recursive positions, and
output type index. We need to allow for failure since, for instance,
it is not possible to move down when there are no children.

Moving down corresponds to splitting the context using first:

down : Nav
down { I} {O} {F} {r} {o} (loc { i’} 〈 x 〉 cs) = first F f x

where f : (i : I + O)→ (r | µ F r) i→
Ctx F i (r | µ F r) i’→Maybe (Loc F r o)

f (inl i) r d = nothing
f (inr i) r d = just (loc r (push d cs))

The continuation function f expresses the behavior for the different
kinds of input positions: we do not descend into parameters, and
on recursive calls we build a new location by returning the tree in
focus and pushing the new layer on the stack.

Moving up corresponds to plugging in the current context. It
fails if there is no context, meaning we are already at the root:

up : Nav
up (loc x empty) = nothing
up {F = F} (loc x (push c cs)) = just (loc 〈 plug F c x 〉 cs)

Moving to the right corresponds to getting the next child. We
process the results of next as in down:

right : Nav
right (loc x empty) = nothing
right { I} {O} {F} {r} {o} (loc x (push {m} c cs)) =

next F f c x
where f : (i : I + O)→ (r | µ F r) i→

Ctx F i (r | µ F r) m→Maybe (Loc F r o)
f (inl i) r d = nothing
f (inr i) r d = just (loc r (push d cs))

The functions presented so far allow reaching every position on
the datatype. Other navigation functions, such as to move left, can
be added in a similar way.

Finally, we provide operations to start and stop navigating a
structure.

enter : ∀ { I O} {F : (I + O)I O} {r : Indexed I} {o : O}→
J Fix F K r o→ Loc F r o

enter x = loc x empty

leave : ∀ { I O} {F : (I + O)I O} {r : Indexed I} {o : O}→
Loc F r o→Maybe (J Fix F K r o)

leave (loc x empty) = just x
leave (loc x (push h t)) = up (loc x (push h t)) >>= leave

To enter we create a location with an empty context, and to leave
we move up until the context is empty. We use _>>=_ : {A B :
Set} → Maybe A→ (A→ Maybe B)→ Maybe B as the monadic
bind to combine Maybe operations.

It is also useful to be able to manipulate the focus of the zip-
per. The function update applies a type-preserving function to the
current focus:

update : ∀ { I O} {F : (I + O)I O} {r : Indexed I}→
J Fix F K r⇒ J Fix F K r→ Loc F r⇒ Loc F r

update f _ (loc x l) = loc (f _ x) l

3.5 Examples
We now show how to use the zipper on the Rose datatype of
Section 2.6. The representation type of rose trees is non-trivial since
it uses composition with lists (and therefore contains an internal
fixed point). Let us define an example tree:

treeB : Rose N→ Rose N
treeB t = fork 5

(fork 4 [] :: (fork 3 [] :: (fork 2 [] :: (fork 1
(t :: []) :: []))))

tree : Rose N
tree = treeB (fork 0 [])

Our example tree has a node 5 with children numbered 4 through 1.
The last child has one child of its own, labelled 0.

Now we define a function that navigates through this tree by
entering, going down (into the child labelled 4), moving right three
times (to get to the rightmost child), descending down once more
(to reach the child labelled 0), and finally increments this label:

navTree : Rose N→Maybe (Rose N)
navTree t = down (enter (fromRose t)) >>=

right >>= right >>= right >>= down >>=
just ◦ (update f _) >>=
leave >>= just ◦ toRose where

f : (i : >)→ J ‘Rose’ K (const N) i→ J ‘Rose’ K (const N) i
f tt = map ‘Rose’ (↑ suc) tt

Since the navigation functions return Maybe, but other functions
(e.g. enter and fromRose) do not, combining these functions re-
quires care. However, it is easy to define a small combinator lan-
guage that overcomes this problem and simplifies writing traversals
with the zipper.

We can check that our traversal behaves as expected:

navTreeExample : navTree tree≡ just (treeB (fork 1 []))
navTreeExample = refl

We have shown how to define a zipper for our universe of
indexed functors. In particular, we show a type of one-hole contexts
for fixed points, using a stack of contexts that is normally used only
for the higher-level navigation functions. Even though our zipper

is more complex than that of Multirec, it operates through all the
codes in our universe, meaning, for instance, that we can now zip
through indexed datatypes.

4. Functor laws
The functorial map of Figure 1 obeys the usual functor laws, which
in the setting of indexed sets and index-preserving functions take
the following form:

mapid : { I O : Set} {r : Indexed I} (C : II O)→
map {r = r} C id⇒ $ id⇒

map◦ : { I O : Set} {r s t : Indexed I}
(C : II O) (f : s⇒ t) (g : r⇒ s)→
map C (f ◦⇒ g)$map C f ◦⇒ map C g

Note that _$ _ encodes pointwise equality and _◦⇒ _ denotes
composition of index-preserving functions. We cannot use the
standard propositional equality here because Agda’s propositional
equality on functions amounts to intensional equality, and we can-
not prove these functions to be intensionally equal, except by pos-
tulating an extensionality axiom.

The first step to prove the laws is to define a congruence lemma
stating that mapping equivalent functions results in equivalent
maps:

mapcong : { I O : Set} {r s : Indexed I} { f g : r⇒ s}
(C : II O)→ f$ g→map C f$map C g

mapcong Z ip i ()
mapcong U ip i x = refl
mapcong (I i’) ip i x = ip i’ x
mapcong (F 1 f % g) ip i x = mapcong F (ip ◦ f) (g i) x

For I we use the proof of equality of the functions. For re-indexing
we need to adapt the indices appropriately. Sums, products, and
composition proceed recursively and rely on congruence of the
constructors:

mapcong (F ⊕ G) ip i (inl x) = cong ≡ inl (mapcong F ip i x)
mapcong (F ⊕ G) ip i (inr x) = cong ≡ inr (mapcong G ip i x)
mapcong (F ⊗ G) ip i (x ,y) = cong ≡2 _ ,_ (mapcong F ip i x)

(mapcong G ip i y)
mapcong (F } G) ip i x = mapcong F (mapcong G ip) i x
mapcong (! o’) ip i x = refl

For Σ, fixed points, and isomorphisms, the proof also proceeds
recursively and by resorting to congruence of equality as necessary:

mapcong (Σ g) ip i (some x) =
cong ≡ some (mapcong (g _) ip i x)

mapcong (Fix F) ip i 〈 x 〉 =
cong ≡ 〈_〉 (mapcong F (‖cong ip (mapcong (Fix F) ip)) i x)

mapcong {r = r} {s = s} (Iso C D e) ip i x =
cong ≡ (_'_.to (e s i)) (mapcong C ip i (_'_.from (e r i) x))

For fixed points, we use a lemma regarding congruence of the _ ‖ _
operator:

‖cong : { I J : Set} {r u : Indexed I} {s v : Indexed J}
{ f1 f2 : r⇒ u} {g1 g2 : s⇒ v}→
f1 $ f2→ g1 $ g2→ f1 ‖ g1 $ f2 ‖ g2

We are now able to prove mapid and map◦. The code is similar to
that for mapcong, and can be seen in the code bundle. Note that the
proofs establishing that the conversion functions really constitute
isomorphisms are essential for the definition of the Iso case.

5. Generic decidable equality
Generic functions can be defined by instantiating standard recur-
sion patterns such as the catamorphism defined in Section 2.5, or
directly, as a type-indexed computation by pattern-matching on the
code. Here we show how to define a semi-decidable equality for
our universe; in case the compared elements are equal, we return
a proof of the equality. Otherwise, no proof is returned—we omit
the proof of difference for brevity, but it can be found in the code
bundle.

The type of decidable equality is:

deqt : { I O : Set} {r : Indexed I} (C : II O)→
SemiDec r→ SemiDec (J C K r)

Note that to compute the equality SemiDec (J C K r) we need the
equality on the respective recursive indexed functors (SemiDec r).
The type constructor SemiDec matches the expected type of semi-
decidable equality: for all possible indices, given two indexed func-
tors we either return proof of their equality or fail:

SemiDec : ∀ { I}→ Indexed I→ Set
SemiDec r = ∀ i→ (x y : r i)→Maybe (x≡ y)

The type constructor _∦_ is a variation on _ ‖ _ adapted to the type
of SemiDec, necessary for the Fix alternative:

infixr 5 _∦_
∦ : { I J : Set} {r : Indexed I} {s : Indexed J}→

SemiDec r→ SemiDec s→ SemiDec (r | s)
(f ∦ g) (inl x) = f x
(f ∦ g) (inr y) = g y

Decidable equality is impossible on Z, trivial on U, and dispatches
to the supplied function f on the selected index i for I:

deqt Z f o () y
deqt U f o tt tt = just refl
deqt (I i) f o x y = f i x y

Re-indexing proceeds recursively on the arguments, after adjusting
the recursive equality and changing the output index:

deqt (F 1 f % g) h o x y = deqt F (h ◦ f) (g o) x y

Sums are only equal when both components have the same con-
structor. In that case, we recursively compute the equality, and ap-
ply congruence to the resulting proof with the respective construc-
tor:

deqt (F ⊕ G) f o (inl x) (inr y) = nothing
deqt (F ⊕ G) f o (inr x) (inl y) = nothing

deqt (F ⊕ G) f o (inl x) (inl y) =
mapMaybe (cong ≡ inl) (deqt F f o x y)

deqt (F ⊕ G) f o (inr x) (inr y) =
mapMaybe (cong ≡ inr) (deqt G f o x y)

The product case follows similarly, using a congruence lifted to two
arguments:

deqt (F ⊗ G) f o (x1 ,x2) (y1 ,y2) = deqt F f o x1 y1 >>=
λ l → deqt G f o x2 y2 >>=
λ r→ just (cong ≡2 _ ,_ l r)

A composition F } G represents a code F containing Gs at the
recursive positions. Equality on this composition is the equality
on F using the equality on G for the recursive positions. Tagging
is trivial after pattern-matching:

deqt (F } G) f o x y = deqt F (deqt G f) o x y
deqt (! o) f .o refl refl = just refl

For Σ, we first check if the witnesses (the first components of the
dependent pair) are equal. Here, we make essential use of the fact
that the type of the witnesses is representable within the universe,
so we can reuse the decidable equality function we are just defining.
If the witnesses are equal, we proceed to compare the elements,
using the code produced by the index, and apply congruence with
some to the resulting proof:

deqt (Σ {C = C} g) f o (some { i1} x) (some { i2} y)
with deqt {r = λ _→ _} C (λ ()) tt i1 i2

deqt (Σ g) f o (some { i} x) (some y) | nothing = nothing
deqt (Σ g) f o (some { i} x) (some y) | just refl =

mapMaybe (cong ≡ some) (deqt (g i) f o x y)

Equality for fixed points uses the auxiliary operator _∦_ described
above to apply f to parameters and deqt to recursive calls:

deqt (Fix F) f o 〈 x 〉 〈 y 〉 =
mapMaybe (cong ≡ 〈_〉) (deqt F (f ∦ deqt (Fix F) f) o x y)

Finally, equality for Iso uses the proof of equivalence of the iso-
morphism. We omit that case here as it is lengthy and unsurprising.

We are now ready to test our decidable equality function:

deqtN : (m n : N)→Maybe (m≡ n)
deqtN = deqt {r = (λ ())}‘N’ (λ ()) tt

The type of natural numbers has no input indices, therefore we
supply the absurd function λ () as the argument for the equality
on the inputs.

deqtExample1 : deqtN (suc zero) (suc zero)≡ just refl
deqtExample1 = refl

deqtExample2 : deqtN (suc zero) zero≡ nothing
deqtExample2 = refl

For lists of naturals, we supply the equality on naturals as the
argument for the equality on the list inputs:

deqt[] : {A : Set}→ ((x y : A)→Maybe (x≡ y))→
(l1 l2 : [A])→Maybe (l1 ≡ l2)

deqt[] {A} f x y = deqt {r = const A}‘ListE’ g tt x y
where g : (i : >)→ ((x y : const A i)→Maybe (x≡ y))

g tt = f

l1 : [N]
l1 = zero :: suc zero :: []
l2 : [N]
l2 = zero :: zero :: []
deqtExample3 : deqt[] deqtN l1 l1 ≡ just refl
deqtExample3 = refl

deqtExample4 : deqt[] deqtN l1 l2 ≡ nothing
deqtExample4 = refl

6. Conclusion
In this paper we have explained a universe of indexed functors for
dependently typed datatype-generic programming in Agda which is
both intuitive, in the sense that its codes map naturally to datatype
features, and powerful, since it supports a wide range of datatypes
and allows defining almost all the datatype-generic behavior we
encounter.

The key features of our approach are: support for parameterized
datatypes and recursive positions in a uniform way, fixed points
as part of the universe, support for general composition, and the
possibility to incorporate isomorphisms between datatypes into

the universe. These features make it possible to reuse codes once
defined, and to make normal user-defined Agda datatypes available
for use in datatype-generic programs.

Along the way we have seen how proofs of correctness eas-
ily integrate with indexed functors, both in the universe and in the
generic functions defined. Furthermore, we have shown a generali-
sation of the zipper operation to our universe, allowing for efficient
and type-safe generic traversals.

Options for future work include generalizing from the zipper to
dissection (McBride 2008) as well as refining the universe further,
for example by allowing generalization over arity and datatype
kind, both present in the work of Weirich and Casinghino (2010).

The original goal that inspired this work was to overcome
the limitations of the Multirec library (Rodriguez Yakushev et al.
2009), which can handle mutually recursive families of datatypes,
but does not support parameterized datatypes or composition.
While we have overcome these limitations, we have done so by
moving from Haskell to Agda. While Agda clearly has many ad-
vantages for generic programming, Haskell is currently still supe-
rior when it comes to writing practical code. We hope that we can
summon up the usual established trickery of encoding dependent
types back in Haskell, and together with the latest improvements in
the treatment of type equalities in GHC 7 obtain a reasonably ele-
gant encoding of indexed functors in Haskell, bringing the power
of this approach to a wider audience.

Acknowledgments
This work has been partially funded by the Portuguese Foundation
for Science and Technology (FCT) via the SFRH/BD/35999/2007
grant. We thank Pierre-Evariste Dagand, Johan Jeuring, Steven
Keuchel, and the anonymous reviewers for the helpful feedback.
Andres Löh particularly thanks Conor McBride for several enlight-
ening discussions on the topic of indexed containers and functors.

References
T. Altenkirch, C. McBride, and P. Morris. Generic programming with

dependent types. In DGP’07, pages 209–257. Springer-Verlag, 2007.
R. Bird and L. Meertens. Nested datatypes. In J. Jeuring, editor, MPC’98,

volume 1422 of LNCS, pages 52–67. Springer, 1998.
J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of

levitation. In ICFP’10, pages 3–14. ACM, 2010.
R. Hinze, J. Jeuring, and A. Löh. Type-indexed data types. In MPC’02,

volume 2386 of LNCS, pages 148–174. Springer, 2002.
G. Huet. The zipper. JFP, 7(5):549–554, 1997.
P. Jansson and J. Jeuring. PolyP—a polytypic programming language

extension. In POPL’97, pages 470–482. ACM, 1997.
C. McBride. The derivative of a regular type is its type of one-hole contexts,

2001. Unpublished manuscript.
C. McBride. Clowns to the left of jokers to the right (pearl): dissecting data

structures. In POPL’08, pages 287–295, 2008.
P. Morris. Constructing Universes for Generic Programming. PhD thesis,

The University of Nottingham, Nov. 2007.
T. van Noort, A. Rodriguez Yakushev, S. Holdermans, J. Jeuring, and

B. Heeren. A lightweight approach to datatype-generic rewriting. In
WGP ’08, pages 13–24. ACM, 2008.

U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, and D. Swierstra, editors, AFP’08, volume 5832 of LNCS,
pages 230–266. Springer, 2009.

A. Rodriguez Yakushev, S. Holdermans, A. Löh, and J. Jeuring. Generic
programming with fixed points for mutually recursive datatypes. In
ICFP’09, pages 233–244. ACM, 2009.

S. Weirich and C. Casinghino. Arity-generic datatype-generic program-
ming. In PLPV’10, pages 15–26. ACM, 2010.

	Introduction
	A universe for indexed functors
	Basic codes
	Isomorphisms
	Adding fixed points
	Mapping for indexed functors
	Recursion schemes
	Using composition
	Parametrized families of datatypes
	Arbitrarily indexed datatypes
	Nested datatypes
	Summary and discussion

	A zipper for indexed functors
	Generic contexts
	Plugging holes in contexts
	Primitive navigation functions: first and next
	Derived navigation
	Examples

	Functor laws
	Generic decidable equality
	Conclusion

