
[Faculty of Science
Information and Computing Sciences]

Generic Programming:
what, why and how

José Pedro Magalhães

5th Dutch Haskell Users’ Group meeting
11/09/2009

[Faculty of Science
Information and Computing Sciences]

2

What kind of generic?

In many languages, the function below is generic:

length :: [a]→ Int
length [] = 0
length (: t) = 1 + length t

In Haskell, however, we call length a polymorphic function, and
reserve the term generic for something else. . .

[Faculty of Science
Information and Computing Sciences]

3

Exercise assistants: Logic I

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

You need:

I A description of the logic domain
I Functionality on that domain:

I Parsing and pretty-printing
I Equality and top-level equality
I Folding
I Exercise generation
I . . .

[Faculty of Science
Information and Computing Sciences]

3

Exercise assistants: Logic I

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

You need:

I A description of the logic domain

I Functionality on that domain:
I Parsing and pretty-printing
I Equality and top-level equality
I Folding
I Exercise generation
I . . .

[Faculty of Science
Information and Computing Sciences]

3

Exercise assistants: Logic I

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

You need:

I A description of the logic domain
I Functionality on that domain:

I Parsing and pretty-printing
I Equality and top-level equality
I Folding
I Exercise generation
I . . .

[Faculty of Science
Information and Computing Sciences]

4

Exercise assistants: Logic II

Let’s get started, then:

data Logic = Logic :→: Logic -- implication
| Logic :↔: Logic -- equivalence
| Logic :∧: Logic -- conjunction (and)
| Logic :∨: Logic -- disjunction (or)
| Not Logic -- negation (not)
| Var String -- variables
| T -- true
| F -- false

[Faculty of Science
Information and Computing Sciences]

5

Exercise assistants: Logic III

showLogic :: Logic→ String
showLogic = . . .

parseLogic :: String→ Logic
parseLogic = . . .

type LogicAlgebra a = . . .

foldLogic :: LogicAlgebra a→ Logic→ a
foldLogic = . . .
evalLogic :: (String→ Bool)→ Logic→ Bool
evalLogic env l = foldLogic . . . l

instance Arbitrary Logic where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

5

Exercise assistants: Logic III

showLogic :: Logic→ String
showLogic = . . .

parseLogic :: String→ Logic
parseLogic = . . .

type LogicAlgebra a = . . .

foldLogic :: LogicAlgebra a→ Logic→ a
foldLogic = . . .
evalLogic :: (String→ Bool)→ Logic→ Bool
evalLogic env l = foldLogic . . . l

instance Arbitrary Logic where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

5

Exercise assistants: Logic III

showLogic :: Logic→ String
showLogic = . . .

parseLogic :: String→ Logic
parseLogic = . . .

type LogicAlgebra a = . . .

foldLogic :: LogicAlgebra a→ Logic→ a
foldLogic = . . .
evalLogic :: (String→ Bool)→ Logic→ Bool
evalLogic env l = foldLogic . . . l

instance Arbitrary Logic where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

5

Exercise assistants: Logic III

showLogic :: Logic→ String
showLogic = . . .

parseLogic :: String→ Logic
parseLogic = . . .

type LogicAlgebra a = . . .

foldLogic :: LogicAlgebra a→ Logic→ a
foldLogic = . . .
evalLogic :: (String→ Bool)→ Logic→ Bool
evalLogic env l = foldLogic . . . l

instance Arbitrary Logic where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

6

Exercise assistants: Linear expressions I

Great! Your exercise assistant was a success and now you are
asked to develop a tool to help students solving linear equations.

You need:

I A description of the linear expressions domain

I Functionality on that domain:
I Parsing and pretty-printing
I Equality and top-level equality
I Folding
I Exercise generation
I . . .

[Faculty of Science
Information and Computing Sciences]

6

Exercise assistants: Linear expressions I

Great! Your exercise assistant was a success and now you are
asked to develop a tool to help students solving linear equations.

You need:

I A description of the linear expressions domain
I Functionality on that domain:

I Parsing and pretty-printing
I Equality and top-level equality
I Folding
I Exercise generation
I . . .

[Faculty of Science
Information and Computing Sciences]

7

Exercise assistants: Linear expressions II

Let’s get started, then:

data Expr = Con Rational -- Constants
| EVar String -- Variables
| Expr :+: Expr -- Addition
| Expr :−: Expr -- Subtraction
| Expr :×: Expr -- Multiplication
| Expr :/: Expr -- Division

[Faculty of Science
Information and Computing Sciences]

8

Exercise assistants: Linear expressions III

showExpr :: Expr→ String
showExpr = . . .

parseExpr :: String→ Expr
parseExpr = . . .

type ExprAlgebra a = . . .

foldExpr :: ExprAlgebra a→ Expr→ a
foldExpr = . . .
evalExpr :: (String→ Rational)→ Expr→ Rational
evalExpr env e = foldExpr . . . e

instance Arbitrary Expr where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

8

Exercise assistants: Linear expressions III

showExpr :: Expr→ String
showExpr = . . .

parseExpr :: String→ Expr
parseExpr = . . .

type ExprAlgebra a = . . .

foldExpr :: ExprAlgebra a→ Expr→ a
foldExpr = . . .
evalExpr :: (String→ Rational)→ Expr→ Rational
evalExpr env e = foldExpr . . . e

instance Arbitrary Expr where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

8

Exercise assistants: Linear expressions III

showExpr :: Expr→ String
showExpr = . . .

parseExpr :: String→ Expr
parseExpr = . . .

type ExprAlgebra a = . . .

foldExpr :: ExprAlgebra a→ Expr→ a
foldExpr = . . .
evalExpr :: (String→ Rational)→ Expr→ Rational
evalExpr env e = foldExpr . . . e

instance Arbitrary Expr where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

8

Exercise assistants: Linear expressions III

showExpr :: Expr→ String
showExpr = . . .

parseExpr :: String→ Expr
parseExpr = . . .

type ExprAlgebra a = . . .

foldExpr :: ExprAlgebra a→ Expr→ a
foldExpr = . . .
evalExpr :: (String→ Rational)→ Expr→ Rational
evalExpr env e = foldExpr . . . e

instance Arbitrary Expr where
arbitrary = . . .

. . .

[Faculty of Science
Information and Computing Sciences]

9

Exercise assistants: Polynomials. . .

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

data Expr = Con Rational
| EVar String
| Expr :+: Expr
| Expr :−: Expr
| Expr :×: Expr
| Expr :/: Expr
| Expr :ˆ: Expr -- Exponentiation

Of course, now you also need to change all your functions. . .

[Faculty of Science
Information and Computing Sciences]

9

Exercise assistants: Polynomials. . .

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

data Expr = Con Rational
| EVar String
| Expr :+: Expr
| Expr :−: Expr
| Expr :×: Expr
| Expr :/: Expr
| Expr :ˆ: Expr -- Exponentiation

Of course, now you also need to change all your functions. . .

[Faculty of Science
Information and Computing Sciences]

9

Exercise assistants: Polynomials. . .

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

data Expr = Con Rational
| EVar String
| Expr :+: Expr
| Expr :−: Expr
| Expr :×: Expr
| Expr :/: Expr
| Expr :ˆ: Expr -- Exponentiation

Of course, now you also need to change all your functions. . .

[Faculty of Science
Information and Computing Sciences]

10

Going generic

. . . is there no easier way to do this?. . .

Yes! The answer is Generic Programming. With it you can:

I Write functions that work on any datatype

I Write common functionality once and for all

I Change your datatypes without changing your functions

I Avoid errors from code duplication

I . . .

[Faculty of Science
Information and Computing Sciences]

10

Going generic

. . . is there no easier way to do this?. . .

Yes! The answer is Generic Programming. With it you can:

I Write functions that work on any datatype

I Write common functionality once and for all

I Change your datatypes without changing your functions

I Avoid errors from code duplication

I . . .

[Faculty of Science
Information and Computing Sciences]

11

Ingredients for Generic Programming I

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to
be able to inspect values and their types at runtime.

Additionally, we have to be able to represent many different
values in a uniform way. If we can map all values into a small
set of a datatypes, we can then define functions on this small
set and they will work for every datatype.

[Faculty of Science
Information and Computing Sciences]

11

Ingredients for Generic Programming I

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to
be able to inspect values and their types at runtime.

Additionally, we have to be able to represent many different
values in a uniform way. If we can map all values into a small
set of a datatypes, we can then define functions on this small
set and they will work for every datatype.

[Faculty of Science
Information and Computing Sciences]

11

Ingredients for Generic Programming I

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to
be able to inspect values and their types at runtime.

Additionally, we have to be able to represent many different
values in a uniform way. If we can map all values into a small
set of a datatypes, we can then define functions on this small
set and they will work for every datatype.

[Faculty of Science
Information and Computing Sciences]

12

Ingredients for Generic Programming II

Haskell’s data construct combines several features: type
abstraction, type recursion, (labeled) sums, and (possibly
labeled) products, but they are essentially sums of products.

We can represent them using the following data types:

data a :+: b = L a | R b
data a :×: b = a :×: b
data Unit = Unit
infixr 5 :+:
infixr 6 :×:

[Faculty of Science
Information and Computing Sciences]

12

Ingredients for Generic Programming II

Haskell’s data construct combines several features: type
abstraction, type recursion, (labeled) sums, and (possibly
labeled) products, but they are essentially sums of products.

We can represent them using the following data types:

data a :+: b = L a | R b
data a :×: b = a :×: b
data Unit = Unit
infixr 5 :+:
infixr 6 :×:

[Faculty of Science
Information and Computing Sciences]

13

Structure Types

We can use these structure types to encode Haskell data types:

data Tree = Leaf | Node Tree Int Tree

type RTree = Unit :+: Tree :×: Int :×: Tree

data List a = Nil | Cons a (List a)
type RList a = Unit :+: a :×: List a

[Faculty of Science
Information and Computing Sciences]

14

Generic values

We encode the values in the same way:

tree :: Tree
tree = Leaf
rtree :: RTree
rtree = L Unit

list :: List Int
list = Cons 2 Nil
rlist :: RList Int
rlist = R (2 :×: Nil)

[Faculty of Science
Information and Computing Sciences]

15

Types and structure types are isomorphic

A type is isomorphic to its structural representation type. For
example, for the list data type we have:

fromList :: List a→ RList a
fromList Nil = L Unit
fromList (Cons a as) = R (a :×: as)
toList :: RList a→ List a
toList (L Unit) = Nil
toList (R (a :×: as)) = Cons a as

All the necessary infrastructure (RList, fromList and toList) can
be generated automatically.

[Faculty of Science
Information and Computing Sciences]

16

Generic functions

A generic function can now be defined by induction on the
structure of types, by writing cases for binary sums, binary
products, nullary products, and primitives.

We use a GADT to unify the representation types into a single
Rep:

data Rep t where
RSum :: Rep a→ Rep b→ Rep (a :+: b)
RProd :: Rep a→ Rep b→ Rep (a :×: b)
RUnit :: Rep Unit

RInt :: Rep Int
RChar :: Rep Char

[Faculty of Science
Information and Computing Sciences]

17

Generic equality I

Now we can define, say, generic equality:

eq :: Rep a→ a→ a→ Bool
eq (RInt) i j = eqInt i j
eq (RChar) c d = eqChar c d
eq (RUnit) Unit Unit = True
eq (RSum ra rb) (L a1) (L a2) = eq ra a1 a2
eq (RSum ra rb) (R b1) (R b2) = eq rb b1 b2
eq (RSum ra rb) = False
eq (RProd ra rb) (a1 :×: b1) (a2 :×: b2) = eq ra a1 a2

∧ eq rb b1 b2

[Faculty of Science
Information and Computing Sciences]

18

Generic equality II

But we are still lacking a case for arbitrary datatypes. When
two types are isomorphic, the corresponding isomorphisms can
be stored as a pair of functions converting back and forth—an
embedding-projection pair:

data EP d r = EP { from :: (d→ r), to :: (r→ d)}

We extend our representation type with a case for arbitrary
types:

data Rep t where
. . .
RType :: EP d r→ Rep r→ Rep d

[Faculty of Science
Information and Computing Sciences]

18

Generic equality II

But we are still lacking a case for arbitrary datatypes. When
two types are isomorphic, the corresponding isomorphisms can
be stored as a pair of functions converting back and forth—an
embedding-projection pair:

data EP d r = EP { from :: (d→ r), to :: (r→ d)}

We extend our representation type with a case for arbitrary
types:

data Rep t where
. . .
RType :: EP d r→ Rep r→ Rep d

[Faculty of Science
Information and Computing Sciences]

19

Generic equality III

And add this case to the generic equality function:

eq :: Rep a→ a→ a→ Bool
. . .
eq (RType ep ra) t1 t2 = eq ra (from ep t1) (from ep t2)

As an example, for lists we have:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum RUnit (RProd ra (rList ra)))

[Faculty of Science
Information and Computing Sciences]

19

Generic equality III

And add this case to the generic equality function:

eq :: Rep a→ a→ a→ Bool
. . .
eq (RType ep ra) t1 t2 = eq ra (from ep t1) (from ep t2)

As an example, for lists we have:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum RUnit (RProd ra (rList ra)))

[Faculty of Science
Information and Computing Sciences]

20

Approaches to Generic Programming in Haskell

The basic principle here described can be explored in several
different ways. We have seen a variant of Lightweight
Implementation of Generics and Dynamics (LIGD). There are
several other libraries for generic programming:

I Scrap Your Boilerplate (SYB)

I Uniplate

I Generics for the Masses (EMGM)

I Regular

I MultiRec

I . . . and at least 7 others

These libraries vary in expressiveness, ease of use and
understanding, and underlying mechanisms used.

[Faculty of Science
Information and Computing Sciences]

21

Conclusions I

I Generic programming provides a way of reducing
“boilerplate” code

I Functions are defined on the structure of datatypes and
therefore work for every datatype

I If a datatype changes, the generic functions do not need to
be adapted

A lot of work has been done in generic programming, and many
functions are already available “for free”, such as generation of
test data, (basic) parsing and pretty-printing, rewriting, etc.

[Faculty of Science
Information and Computing Sciences]

22

Conclusions II

Current work at Utrecht University focuses on:

I Development of a powerful, easy to use and expressive
generic programming library

I Applying generic programming to a large, showcase
application

I Comparing performance of different approaches and
investigating techniques for optimization of generic
programs

