[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Generic Programming:
what, why and how

José Pedro Magalhaes

5th Dutch Haskell Users" Group meeting
11/09/2009

What kind of generic?

In many languages, the function below is generic:

length :: [a] — Int
length [] =0
length (_:t) =1+ length t

In Haskell, however, we call length a polymorphic function, and
reserve the term generic for something else. . .

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

24

rcise assistants: Logic |

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

rcise assistants: Logic |

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

You need:

> A description of the logic domain

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Exercise assistants: Logic |

Imagine you are writing software for helping students turn logic
expressions into disjunctive normal form.

You need:
» A description of the logic domain

» Functionality on that domain:
» Parsing and pretty-printing

» Equality and top-level equality
> Folding
> Exercise generation
>
_#\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
3 K7

Exercise assistants: Logic Il

Let's get started, then:

data Logic = Logic :—: Logic -- implication
| Logic :<>: Logic -- equivalence
| Logic :A: Logic -- conjunction (and)
| Logic:V: Logic -- disjunction (or)

| Not Logic -- negation (not)
| Var String -- variables
| T -- true
| F -- false
5&\\“@ [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
o N

rcise assistants: Logic Ill

showLogic :: Logic — String
showLogic = . ..

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

arcise assistants: Logic 11

showLogic :: Logic — String
showLogic = . ..

parseLogic :: String — Logic
parseLogic = . ..

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Exercise assistants: Logic Il

showLogic :: Logic — String
showLogic = ...

parseLogic :: String — Logic

parseLogic = ...

type LogicAlgebraa = ...

foldLogic :: LogicAlgebra a — Logic — a
foldLogic = ...

evalLogic :: (String — Bool) — Logic — Bool
evalLogic env | = foldLogic ... |

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

5

Exercise assistants: Logic |

showLogic :: Logic — String

showLogic = ...

parseLogic :: String — Logic

parseLogic = ...

type LogicAlgebraa = ...

foldLogic :: LogicAlgebra a — Logic — a
foldLogic = ...

evalLogic :: (String — Bool) — Logic — Bool
evalLogic env | = foldLogic ... |

instance Arbitrary Logic where

arbitrary = ...
_’\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
5 N

Exercise assistants: Linear expressions |

6

Great! Your exercise assistant was a success and now you are
asked to develop a tool to help students solving linear equations.

You need:

» A description of the linear expressions domain

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Exercise assistants: Linear expressions |

Great! Your exercise assistant was a success and now you are
asked to develop a tool to help students solving linear equations.

You need:
» A description of the linear expressions domain

» Functionality on that domain:
» Parsing and pretty-printing

» Equality and top-level equality
> Folding
> Exercise generation
>
_\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
6 K7

7

Exercise assistants: Linear expressions |l

Let's get started, then:

data Expr = Con Rational
| EVar String
| Expr :+: Expr
| Expr :—: Expr
| Expr :x: Expr
| Expr:/: Expr

AW
% Y é Universiteit Utrecht

-- Constants

-- Variables

-- Addition

-- Subtraction
-- Multiplication
-- Division

[Faculty of Science
Information and Computing Sciences]

rcise assistants: Linear expressions IlI

showExpr :: Expr — String
showExpr = ...

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

2rcise assistants: Linear expressions 11

showExpr :: Expr — String
showExpr = ...

parseExpr :: String — Expr
parseExpr = ...

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Exercise assistants: Linear expressions Il

showExpr :: Expr — String
showExpr = ...

parseExpr :: String — Expr
parseExpr = ...

type ExprAlgebraa = ...

foldExpr :: ExprAlgebra a — Expr — a
foldExpr = ...

eval Expr :: (String — Rational) — Expr — Rational
evalExpr env e = foldExpr ... e

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

8

Exercise assistants: Linear expressions Il

showExpr :: Expr — String
showExpr = ...

parseExpr :: String — Expr
parseExpr = ...

type ExprAlgebraa = ...

foldExpr :: ExprAlgebra a — Expr — a

foldExpr = ...

eval Expr :: (String — Rational) — Expr — Rational
evalExpr env e = foldExpr ... e

instance Arbitrary Expr where
arbitrary = ...

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

8

ercise assistants: Polynomials. . .

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Exercise assistants: Polynomials. ..

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

data Expr = Con Rational

| EVar String

| Expr :+: Expr

| Expr :—: Expr

| Expr :x: Expr

| Expr:/: Expr

| Expr:": Expr -- Exponentiation

i — S e
9 AN

9

Exercise assistants: Polynomials. ..

%

7

Oops. After all your tool should deal with polynomials too. You
need to add exponentiation to your datatype:

data Expr = Con Rational

EVar String

Expr :+: Expr
Expr :—: Expr
Expr :x: Expr
Expr :/: Expr

Expr :": Expr

-- Exponentiation

Of course, now you also need to change all your functions. . .

LN
8 S Universiteit Utrecht
NS

[Faculty of Science
Information and Computing Sciences]

ng generic

...is there no easier way to do this?. ..

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Going generic

...is there no easier way to do this?. ..

Yes! The answer is Generic Programming. With it you can:

» Write functions that work on any datatype

» Write common functionality once and for all

» Change your datatypes without changing your functions
» Avoid errors from code duplication
> .
;s\\“% [Faculty of Science
; % Universiteit Utrecht Information and Computing Sciences]
10 NS

redients for Generic Programming |

What is necessary for generic programming?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

gredients for Generic Programming |

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to
be able to inspect values and their types at runtime.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Ingredients for Generic Programming |

What is necessary for generic programming?

The essential ingredient is a reflection mechanism. We have to
be able to inspect values and their types at runtime.

Additionally, we have to be able to represent many different
values in a uniform way. If we can map all values into a small
set of a datatypes, we can then define functions on this small
set and they will work for every datatype.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
1 NS

Ingredients for Generic Programming Il

Haskell's data construct combines several features: type
abstraction, type recursion, (labeled) sums, and (possibly
labeled) products, but they are essentially sums of products.

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

12

Ingredients for Generic Programming Il

Haskell's data construct combines several features: type
abstraction, type recursion, (labeled) sums, and (possibly
labeled) products, but they are essentially sums of products.

We can represent them using the following data types:

dataa:+:b=La|Rb
dataa:x:b=a:x:b
data Unit = Unit

infixr 5 :+:
infixr 6 :x:
&\\‘Wﬁ,) [Faculty of Science
? &) § Universiteit Utrecht Information and Computing Sciences]
12 K\

Structure Types

We can use these structure types to encode Haskell data types:

data Tree = Leaf | Node Tree Int Tree
type RTree = Unit :+: Tree :X: Int :x: Tree

data List a = Nil | Cons a (List a)
type RList a = Unit :+: a :x: List a

5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
13 N

eric values

We encode the values in the same way:

tree:: Tree
tree = Leaf

rtree :: RTree
rtree = L Unit

list :: List Int

list = Cons 2 Nil
rlist :: RList Int

rlist = R (2 :x: Nil)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Types and structure types are isomorphic

A type is isomorphic to its structural representation type. For
example, for the list data type we have:

from ., ::Lista — RList a

from ., Nil = L Unit
from, ., (Cons aas) =R (a :x: as)
tolist ::RList a — List a

toLjst (L Unit) = Nil

toliss (R (a:x:as)) = Cons a as

All the necessary infrastructure (RList, from, ., and toyis) can
be generated automatically.

_“\\‘Wﬁ' [Faculty of Science
% Y % Universiteit Utrecht
15 NS

Information and Computing Sciences]

Generic functions

16

Sy
= % Universiteit Utrecht Information and Computing Sciences]
K

£\

A generic function can now be defined by induction on the
structure of types, by writing cases for binary sums, binary
products, nullary products, and primitives.

We use a GADT to unify the representation types into a single
Rep:

data Rep t where
RSum ::Repa — Rep b — Rep (a :+: b)
RProd :: Repa — Rep b — Rep (a :x: b)
RUnit :: Rep Unit
RiInt ::Rep Int
RChar :: Rep Char

[Faculty of Science

17

Generic equality |

Now we can define, say, generic equality:

eq::Repa —a — a — Bool

eq (RInt) i j =eq 1]
eq (RChar) c d = echar € d
eq (RUnit) Unit Unit = True
eq (RSum ry ry) (L ag) (L ap) =eq 1, a1 ay
eq (RSum Ta b) (R b1) (R bz) =eqrp b1 bz
eq (RSumry rp) — = False
eq (RProd v, 1y,) (a7 :x: by) (a2 X:by) = eqroarap
VAN eqry b] bz

W

[Faculty of Science
fg Universiteit Utrecht Information and Computing Sciences]
'ﬂm“

Generic equality |l

But we are still lacking a case for arbitrary datatypes. When
two types are isomorphic, the corresponding isomorphisms can
be stored as a pair of functions converting back and forth—an

embedding-projection pair:

dataEP dr =EP {from::(d —r),to:: (r — d)}

5&\\“’%}) [Faculty of Science
% N § Universiteit Utrecht Information and Computing Sciences]
NS

18 H

Generic equality |l

But we are still lacking a case for arbitrary datatypes. When
two types are isomorphic, the corresponding isomorphisms can
be stored as a pair of functions converting back and forth—an

embedding-projection pair:
dataEP dr =EP {from::(d —r),to:: (r — d)}

We extend our representation type with a case for arbitrary
types:

data Rep t where

RType::EP dr — Repr — Rep d

N/ Faculty of Science
NN

7; :‘ Universiteit Utrecht Information and Computing Sciences]
18 TN

eric equality Il

And add this case to the generic equality function:

eq::Repa —a— a — Bool

eq (RType ep 1) t1t2 = eq v, (from ep t1) (from ep t2)

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Generic equality 111

And add this case to the generic equality function:

eq::Repa —a— a— Bool

eq (RType ep 1) t1 t2 = eq r, (from ep t1) (from ep t2)
As an example, for lists we have:

rList :: Rep a — Rep (List a)

rList ¥, = RType (EP from, ., toList)
(RSum RUnit (RProd r, (rList 1,)))

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
19 NS

Approaches to Generic Programming in Haskell

The basic principle here described can be explored in several
different ways. We have seen a variant of Lightweight
Implementation of Generics and Dynamics (LIGD). There are
several other libraries for generic programming:

» Scrap Your Boilerplate (SYB)

» Uniplate

Generics for the Masses (EMGM)
Regular

MultiRec

» ...and at least 7 others

v

v

v

These libraries vary in expressiveness, ease of use and
understanding, and underlying mechanisms used.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
20 NS

Conclusions |

» Generic programming provides a way of reducing
“boilerplate” code

» Functions are defined on the structure of datatypes and
therefore work for every datatype

» If a datatype changes, the generic functions do not need to
be adapted

A lot of work has been done in generic programming, and many
functions are already available “for free”, such as generation of
test data, (basic) parsing and pretty-printing, rewriting, etc.

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
21 KN\

Conclusions |l

Current work at Utrecht University focuses on:

» Development of a powerful, easy to use and expressive
generic programming library

» Applying generic programming to a large, showcase
application

» Comparing performance of different approaches and
investigating techniques for optimization of generic

programs
_’\\\‘Wf/} [Faculty of Science
§ &) % Universiteit Utrecht Information and Computing Sciences]
2 KN

