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ABSTRACT

We present a new system for chord transcription
from polyphonic musical audio that uses domain-specific
knowledge about tonal harmony and metrical position to
improve chord transcription performance. Low-level pulse
and spectral features are extracted from an audio source
using the Vamp plugin architecture. Subsequently, for
each beat-synchronised chromagram we compute a list of
chord candidates matching that chromagram, together with
the confidence in each candidate. When one particular
chord candidate matches the chromagram significantly bet-
ter than all others, this chord is selected to represent the
segment. However, when multiple chords match the chro-
magram similarly well, we use a formal music theoreti-
cal model of tonal harmony to select the chord candidate
that best matches the sequence based on the surrounding
chords. In an experiment we show that exploiting metri-
cal and harmonic knowledge yields statistically significant
chord transcription improvements on a corpus of 217 Bea-
tles, Queen, and Zweieck songs.

1. INTRODUCTION

Chord labels are an indispensable and ubiquitous aid for
modern musicians. Although classically trained perform-
ers still rely mainly on printed scores, describing in high
detail how a piece of music should be performed, the emer-
gence of jazz, improvised, and popular music gave rise to
the need for more flexible and abstract representations of
musical harmony. This led to a notational vehicle often re-
ferred to as a lead sheet. A lead sheet typically contains
only the melody of a composition accompanied with the
essential harmonic changes denoted with chord labels. It
can be considered a rather informal map that guides the
performers and specifies the boundaries of the musical play-
ground. Also, in music theory, music education, composi-
tion, and harmony analysis, chord labels have proven to be
a convenient way of abstracting from individual notes in
a score. Hence, these days chord labels are omnipresent:
there are publishers that specialise in publishing lead sheets,
and many lead sheets circulate on the internet.
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Figure 1. A schematic outline of the MPTREE system.

The many possible applications of chord labels have
sparked research focusing specifically on chords. Many
Music Information Retrieval (MIR) tasks, like similarity
estimation, genre detection, or query by humming, can
benefit from some reduction of the raw audio signal into
a manageable symbolic representation. Although much
progress has been made, multiple fundamental frequency
(F0) estimation, the holy grail in polyphonic music tran-
scription, might still be considered too unreliable and im-
precise for many MIR tasks. Chord transcription, which
deals with transforming polyphonic audio into musically
feasible symbolic annotations, has offered a welcome al-
ternative. For example, in automatic harmony analysis [8],
and similarity estimation [5], chord labels are used as pri-
mary data representation.

In this paper we present a novel system, named
MPTREE, 1 that automatically transcribes chord labels from
a polyphonic musical audio source. This system is differ-
ent from most other chord transcription systems, e.g. [12],
in that it does not rely on statistical learning. Although ma-
chine learning has brought chord transcription (and MIR
in general) many merits, we believe that there is a limit
to what can be learned from musical data alone [6]. Cer-
tain musical segments can only be annotated correctly
when musical knowledge not exhibited in the data is taken
into account as well. Moreover, Hidden Markov Models
(HMMs), frequently used to model the transitions between
chords, model only the transition between a small number
of subsequent chords, and have a bias towards sequences
they have been trained on. Our system, on the other hand,
relies on a knowledge-based model of tonal harmony. The
HARMTRACE 2 harmony model [4] is explicitly designed
for modelling the relations between chords, also over a
long time span. In this paper we show how this harmony
model can be employed to improve chord transcription.

A global outline of the system is presented in Figure 1.
We start by briefly reviewing some important literature in
Section 2. Next, we give a complete outline of the MPTREE

1 (Musical) Model Propelled TRanscription of Euphonic Entities
2 Harmony Analysis and Retrieval of Music with Type-level Represen-
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system in Section 3. In Sections 4 and 5 we discuss the
experiments and results. Finally, we conclude the paper
by recapitulating the main advantages and disadvantages
of the MPTREE system, and highlight some directions for
future research.

Contribution. In this paper we bridge the gap between
top-down symbolic music analysis and bottom-up audio
feature extraction. We show that exploiting metrical posi-
tion and a model of tonal harmony yields significant chord
transcription improvements on 217 songs by the Beatles,
Queen, and Zweieck.

2. RELATED WORK

The first computational approaches to automatic chord tran-
scription from musical audio emerged at the end of the
1990s. The first audio chord transcription system was de-
veloped by Fujishima [3]. In general, the outline of Fu-
jishima’s system is not so different from the chord tran-
scription systems nowadays developed and also no so dif-
ferent from the system presented here. First, chroma fea-
tures [15] are extracted at every frame, representing the
intensities of the twelve different pitch classes as found in
the spectrum. Next, the chroma vectors are matched with
chord profiles; in Fujishima’s case this is done with an Eu-
clidean distance. Although the used digital signal process-
ing parameters may vary, most approaches towards auto-
matic chord transcription use a chroma feature based rep-
resentation and differ in other aspects, like chroma tuning,
noise reduction, chord transition smoothing, and harmon-
ics removal. For an elaborate review of related work on
automatic chord transcription we refer to Mauch [9].

From 2008 on, chord transcription has received a con-
siderable amount of attention in the yearly benchmarking
challenge MIREX. 3 Each year, between 7 and 19 differ-
ent chord transcription algorithms were evaluated. In 2008,
the system of Bello and Pickens [1], which was the first to
synchronise chroma vectors at every beat, performed the
best. The following year, Mauch et al. [10] presented a
system that gave good results by structurally segmenting
a piece and combining chroma information from multiple
occurrences of the same segment type. In 2010, Mauch et
al. [11] improved their previous results by using an approx-
imate note transcription technique. In 2011, the system of
Ni et al. [12], using only machine learning techniques, gave
comparable results.

3. SYSTEM OUTLINE

An outline of the MPTREE system is shown in the flowchart
of Figure 2. First, we extract chroma features and beat lo-
cations from the audio signal and synchronise the chroma
features at the beat positions (Section 3.1). The chroma
features are used to estimate the global key and possible
modulations in the musical audio (Section 3.4), and for
creating a sequence of chord candidate lists (Section 3.2).
These candidate lists contain the chords that match the
chroma well a particular beat position. If there is a lot

3 http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Figure 2. A schematic outline of the MPTREE system. The
boxes with dotted lines denote the high level modules as
outlined in Figure 1.

of uncertainty in the data, these lists might contain mul-
tiple chords; however, if there is a strong match between
the spectrum and one particular chord candidate, the lists
will contain a single candidate. Subsequently, the sequence
of chord candidate lists is segmented (Section 3.5). Fi-
nally, the best matching sequence per segment is selected
by expanding all possible sequences, and preferring the se-
quence with the fewest harmony errors (Section 3.6).

3.1 Feature extraction front-end

Our work depends heavily on the Vamp plugin architec-
ture. 4 As feature extraction front-end we rely on the
NNLS Chroma Vamp plugin 5 developed by Mauch [9].
The NNLS Chroma plugin transforms an audio signal into
two 12-dimensional chroma vectors representing the har-
monic content at each frame. The first chroma vector
(bass) represents the low notes and emphasises the lower
frequencies, while the second (treble) represents the higher
notes, emphasising higher frequencies. The idea behind
this separation is to model the prominent role of the bass
note in chord transcription. We present a brief overview of
the most important properties and parameters of the NNLS
plugin. For specific signal processing details we refer to
Mauch [9].

We use the sonic-annotator 6 (version 0.6) as Vamp host,
and sample the audio tracks at 44,100 Hz. If the audio file
contains two stereo channels, the mean of both channels is
used for analysis. We set the sonic-annotator to use a Hann
window of 16,384 samples and a hop size, i.e. the amount
of samples that overlap between two subsequent frames, of
2,048 samples. Next, the spectrogram is calculated at each
frame using a discrete-time Fourier transform and mapped
to a spectrogram with bins that are linearly spaced in log-
frequency (similar to a constant-Q transform). The NNLS

4 http://www.vamp-plugins.org
5 http://isophonics.net/nnls-chroma
6 http://omras2.org/SonicAnnotator



C:Maj 1 0 0 0 1 0 0 1 0 0 0 0
D:Min 0 0 1 0 0 1 0 0 0 1 0 0

C C] D E[ E F F] G G] A B[ B

Table 1. A binary chord structure of a C major and a D mi-
nor chord, which are matched against the chroma features.

0.93 C7

0.96 Am
0.94 G 0.97 C 0.94 Bm

. . . 1.00 C 1.00 F 1.00 Gm 1.00 Em 1.00 F 1.00 B . . .

. . . 1 2 3 4 1 2 . . .

Table 2. An excerpt of a sequence of chord candidate lists.
The number to the left of the chord label represents its
normalised Euclidean distance to the current beat aligned
chroma vector. Below the candidate lists the beat position
within the bar is printed.

Chroma Vamp plugin also accounts for tuning differences
in the audio signal. Also, the NNLS plugin accounts for
harmonics other then the F0 of chord notes by estimat-
ing which pitch activation generates an interference pattern
that best matches the partials found in a spectrum.

3.2 Beat-synchronous chord probability estimation

After obtaining bass and treble chroma features, we beat-
synchronise them by averaging the feature vectors between
two beats. For this, we obtain a list of beat positions by
using the Queen Mary, University of London, Bar and Beat
Tracker plugin [2]. 7 Besides beat timestamps, this beat
tracker also outputs the position of the beat inside the bar.

To estimate the probability of a particular chord sound-
ing at a beat position, we assemble a dictionary of chords
that we expect to occur in the music. A chord is repre-
sented as a binary 12-dimensional vector in which the si-
multaneously sounding pitch classes are denoted with a 1
(see the examples in Table 1). This allows us to model
any possible chord within one octave. Currently, we use a
limited chord dictionary with three chord structures: ma-
jor, minor, and dominant seventh. We chose these three
chords because they map nicely to the chord classes used
by the HARMTRACE harmony model. In HARMTRACE,
chords are categorised in four classes: major chords, minor
chords, dominant seventh chords, and diminished seventh
chords (see [4, Chapter 4] for details). However, because
diminished seventh chords are not very common in pop
music, we ignored this class in this study. The bass note of
the chord is modelled with an additional 12-dimensional
vector containing only one pitch for the bass note, to match
the bass chroma vector as outputted by the NNLS chroma
plugin. Next, we generate the chord dictionary by cycli-
cally rotating all chord structures for all twelve semitones,
yielding 48 different chord candidates, and a “no chord”
structure containing only 0’s.

Having a matrix of beat-synchronised bass and treble
chromagrams and a chord dictionary, we estimate the prob-
ability of a chord sounding at a particular beat by calcu-

7 http://vamp-plugins.org/plugin-doc/
qm-vamp-plugins.html\#qm-barbeattracker
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Figure 3. An excerpt of the HARMTRACE analysis of
The long and winding road by the Beatles (of which the
ground-truth chord annotations were used for parsing).
The Vd/X represents a diatonic fifth succession, and a
V/X7 denotes a secondary dominant.

lating the Euclidean distance between the chord structures
and the chroma feature. These distances are calculated for
every chord candidate at every beat. Next, we sort the
chord candidates by descending Euclidean distance. To ob-
tain a relative measure of the fit between a chord candidate
and the chroma vector in the range [0,1], the distances are
normalised by dividing them by distance of the best match-
ing chord candidate. In case the information in the spec-
trum clearly favours a certain chord candidate, the initial
differences in normalised distances will be relatively large
and will decrease quickly after the head position. Hence,
we can use these differences as a measure of relative chord
candidate preference. If this preference is very strong, the
top chord candidate will be selected to represent that beat.
If this preference is less pronounced, we use the HARM-
TRACE harmony model to decide which of the chord can-
didates would make most sense, harmonically. Typically,
this results in a sequence of chord candidates similar to the
one shown in Table 2. The selection is performed by cut-
ting off the chord candidate list at a fixed distance. The
cut-off value is an important parameter to the model, in-
fluencing both the speed and the transcription quality of
the system. After some experimentation we found that a
cut-off value of 0.9 gives good results.

3.3 A model of tonal harmony

Given a list of chord candidates, we select a harmonically
sensible sequence by exploiting a formal model of tonal
harmony. This model, which is elaborately explained by
De Haas [4], takes a sequence of symbolic chord labels as
input and automatically derives a tree structure explaining
the function of the chords in their tonal context. Figure 3
depicts an excerpt of the harmony analysis of The long and
winding road by the Beatles.

Extending the ideas of Rohrmeier [13], a piece is mod-
elled as a sequence of tonic and dominant nodes (Ton and
Dom, respectively) that represent the global patterns of har-
monic tension and release. Every Dom node can be pre-
ceded by a subordinate sub-dominant (Sub) building up
the tension towards the dominant. Finally, a branch will
always end in a scale degree node, representing the rela-
tion between the actual chord and the key of the piece, and
the leaves of the tree show the actual input chord labels. On
the path from functional annotation (Ton, Dom, and Sub) to
chord label, various harmonic annotations, like secondary



dominants, tritone substitutions, diatonic fifth chains, di-
minished seventh chord transpositions, etc., can occur, ex-
plaining the role of a chord label in its tonal context. If a
sequence does not match the harmonic specification, like
in the first phrase of Figure 3, an input chord label is au-
tomatically deleted or inserted to match the specification.
Hence, for a sequence of chords we can always derive an
automatic harmonic analysis.

3.4 Key-finding

To be able to use the HARMTRACE harmony model for
the selection of chord sequences that are music theoreti-
cally realistic, we require information about the key of the
piece. To fulfil this requirement, we present a key-finding
algorithm inspired by the ideas of Temperley [14, Chapter
7] and Krumhansl [7, Chapter 4]. Again, for feature extrac-
tion we depend on the NNLS chroma Vamp plugin, which
allows for exporting different kind of audio features. For
key-finding we export a single tuned chroma feature with-
out the NNLS pitch activation estimation.

To estimate the key of a piece and the possible mod-
ulations, we use a key-profiles based algorithm. A key-
profile is a 12 value vector representing the stability of the
twelve pitch classes relative to a given key. The values
of these profiles are based on empirical measurements of
Krumhansl and Kessler [7], in which subjects were asked
to rate how well a pitchclass fits a previously established
tonal context on a 1 to 7 scale. Given the major and minor
key profiles, a key-strength table K is created. This table
stores the estimated strength of all 24 keys at every beat
position. The key strength is estimated by calculating the
Pearson correlation coefficient, r. A value of r close to 0
indicates that there is little to no relation between the key-
profile and chroma vector, whereas a value close to 1 or−1
indicates a positive or negative linear dependence between
the key-profile and the chroma vector, respectively.

Matching the key-profiles at every beat does not yet re-
sult in the desired key assignment; because beat size seg-
ments are rather small, key changes occur too often. To
overcome this problem, we use a simple dynamic program-
ming algorithm based on the algorithm in [14] to smooth
the key changes. We create a table M storing the cumula-
tive key-strength of every key at every beat, and minimise
the number of modulations. Switching to another key, i.e.
changing the column j in M, is penalised. This behaviour
is captured in the following recursive formula:

M[0, j] = K[0, j]

M[i, j] = max
{

M[i−1, j]+K[i, j],
M[i−1, j]+K[i,k]+ p,

where {k | ∀x : K[i,x]6 K[i,k]}

Here, M stores the cumulative key-strength for every ith

beat and every jth key. Similarly, K stores the correlation
between every ith chroma vector and jth key profile. k de-
notes the index of the best matching key at beat i. The
parameter p specifies the modulation penalty. We found a
value of 1 for p to give good results. Finally, we obtain the

definite key assignment by keeping track of the maximum
cumulative key-strength at every beat, and constraining the
key segments to be at least 16 beats long.

3.5 Segmentation and grouping

Given a sequence of chord candidate lists, we analyse all
possible chords sequence combinations with HARMTRACE

and select the simplest analysis with the least amount of er-
rors. However, the number of possible combinations grows
exponentially with the number of candidate lists. Hence, it
is vital to split our sequence of chord candidate lists into
smaller, musically meaningful segments.

Also, from a musical point of view, it is unrealistic to
expect chords to change at every beat. Therefore, we re-
duce the space of analysed sequences by merging subse-
quent chord candidate lists that contain the same chords.
The candidate lists are merged by taking the intersection
between two adjacent lists, if the intersection contains at
least one chord. In this procedure we take into account
that chords are more likely to change on strong metrical
positions by adding two additional constraints: when two
candidate lists are merged, the first and leftmost list must
be positioned either at the first or third beat of the bar. The
merging procedure is executed sequentially, and merged
candidate lists can be merged again with the subsequent
chord candidate list. For example, if the candidate lists at
beat position 1 and 2 are merged, the merged list can again
merge with beat position 3 if the intersection contains at
least one chord. Finally, the probabilities of the merged
candidate lists are summed, and the lists are sorted by de-
scending probability.

Subsequently, the sequence of chord candidate lists is
segmented on the basis of the estimated key, resulting in
segments that contain only a single key assignment. Nev-
ertheless, these sequences are still rather long for analysing
all possible combinations. Within the HARMTRACE har-
mony model, a piece is viewed as a collection of tonics
(Ton) and dominants (Dom) nodes. Hence, from the pars-
ing point of view, splitting a chord sequence into segments
that match the subtrees rooted by a Ton or Dom seems
natural. Because local information about the key is avail-
able, we can calculate the key-relative scale degrees of the
chords and split a sequence at every beat where a I or V
scale degree occurs in a chord candidate list. This gives
us sequences that are short, but still musically meaning-
ful. In case our key-finding method is off the mark, and
we still end up with a rather long sequence, we enforce the
sequences to be no longer than 12 chords, and expand into
no more than 30 different candidate sequences.

3.6 Chord selection by parsing

Now that we have access to both a segmented sequence
of chord candidate lists and local key information, we are
ready to apply the HARMTRACE harmony model. For ev-
ery segment we parse all possible combinations of chord
sequences and select the sequence that has the lowest error-
ratio. The error-ratio is the number of insertions and dele-
tions of the error-correcting parser divided by the number



of chords. When two sequences have the same error-ratio,
we select the most simple solution by picking the sequence
that returns the smallest parse tree. In case the parse tree
size is also identical, we select the sequence returning the
parse tree of least depth.

The harmony model used in MPTREE is not the exact
same model as the one described by De Haas [4, Chap-
ter 4]. The original HARMTRACE harmony model exhibits
a bias towards jazz harmony. Therefore, we made several
adaptations, but the majority of the specifications remained
unchanged. The original harmony model was designed to
do an automatic harmonic analysis of a chord sequences
and could explain a vast amount of exotic harmonic phe-
nomena. Within the pop dataset on which the MPTREE sys-
tem is evaluated, some of these specifications are unnec-
essary. Hence, we remove some of the specifications ac-
counting for jazz-specific chord changes. 8 Furthermore,
we add two rules that account for some blues phenom-
ena. 9 The Haskell code of both the HARMTRACE models
and the MPTREE system is freely available online. 10

4. EXPERIMENTS

To measure the effect of the various modules on chord
transcription performance we evaluate four different ver-
sions of the system described before. The simplest system,
named SIMPLE, always selects the chord that best matches
the bass and treble chroma vectors. The second system,
GROUP, also picks the best matching chord candidate, but
does incorporate the grouping as described in Section 3.5.
The third system is the full MPTREE system, including key-
finding. Finally, we include a fourth system, MPTREEkey,
to measure the effect of the key-finding. MPTREEkey does
not use key-finding, but instead uses ground-truth key an-
notations [10]. All systems are implemented in the func-
tional programming language Haskell and compiled using
the Glasgow Haskell Compiler, version 7.4.1.

We evaluate the quality of an automatic chord transcrip-
tion by comparing it to a transcription of the same piece
made by a human expert. We evaluate our system on 179
songs from 12 Beatles albums, 20 Queen songs, and 18
Zweieck songs [10]. 11 The chord vocabulary for the MIREX
evaluation is limited to 24 major and minor chords aug-
mented with a “no chord” label, to be used for silence or
non-harmonic passages, for instance. In accordance with
MIREX, we also use these 25 classes. The translation from
the three chord classes of HARMTRACE to major and mi-
nor chords is trivial: chords of the major and dominant
class are classified as major, and chords of the minor class
are classified as minor.

Typically in MIREX, the relative correct overlap (RCO)
is used as a measure of transcription accuracy. The RCO
is defined as the total duration of correctly overlapping

8 The specifications with numbers 20, 21, and 22 were removed.
9 Allowing dominant seventh chords at the IV and I scale degree to

function respectively as sub-dominant and tonic, to be precise.
10 http://hackage.haskell.org/package/HarmTrace-2.0
11 http://isophonics.net/content/

reference-annotations

SIMPLE GROUP MPTREE MPTREEkey

RCO 0.688 0.736 0.739 0.741
Running time 5m1s 5m9s 10m23s 7m37s

Table 3. The relative correct overlap and the running times
for the four evaluated chord transcription systems.

chords divided by the total duration of the song. Both the
ground-truth and the automatic chord transcription consist
of a chord label and an accompanying onset and offset
time-stamp. We approximate the RCO by sampling both
the ground-truth and the automatic annotations every 10ms
and dividing the number of correctly annotated samples by
the total number of samples.

5. RESULTS

We have compared the MPTREE, MPTREEkey, GROUP, and
the baseline SIMPLE system on 217 songs of the Beatles,
Queen, and Zweieck. All runs were performed on the same
Intel Core i7-2600 Processor running at 3.40GHz. The
measured differences in RCO and running times are dis-
played in Table 3.

We tested whether the differences in RCO are statis-
tically significant by performing a non-parametric Fried-
man test 12 with a significance level of α = 0.05. The
Friedman ANOVA is chosen because the underlying dis-
tribution of the RCO data is unknown, and, in contrast to
a regular ANOVA, the Friedman does not assume a spe-
cific distribution of variance. To determine which pairs of
measurements differ significantly, a post-hoc Tukey HSD
test is conducted. Within the MIREX challenge the same
statistical procedure is followed. There are significant dif-
ferences between the four systems, χ2(3,N = 217) = 339,
p < 0.0001. Not all pairwise differences between systems
are statistically significant; the difference between GROUP

and MPTREE, and between MPTREE and MPTREEkey are
not significant. All other pairwise differences (including
the difference between MPTREEkey and GROUP) are statis-
tically significant.

Considering the differences between the MPTREEkey

system and the SIMPLE and GROUP systems, we can con-
clude that using the HARMTRACE harmony model for
chord candidate selection improves chord transcription
performance, if correct key information is available. This
difference in performance cannot be attributed to the merg-
ing function described in Section 3.5 alone. However,
clearly a lot of the performance gain must be attributed to
this merging function. Hence, we can conclude that forcing
chords not to change often and mainly at strong metrical
positions improves transcription performance. Although
the difference between MPTREE an MPTREEkey is not sta-
tistically significant, the errors in the key-finding do have
an effect on the transcription performance, since the differ-
ence between GROUP and MPTREE is not, but the difference
between GROUP and MPTREEkey is statistically significant.

The running times as shown in Table 3 exclude the time

12 All statistical tests were performed in Matlab 2011a.



taken by the Vamp feature extraction plugins. The results
show a trade-off between transcription performance and
computation time. However, the running times are accept-
able, less than 3 seconds per song on average.

6. DISCUSSION

In this paper we aim at bridging the gap between bottom-
up audio feature extraction and top-down symbolic mu-
sic analysis. We demonstrate in a proof-of-concept how
automatic chord transcription can be improved by using
domain-specific knowledge about the metrical structure and
tonal harmony. For feature extraction we rely on the NNLS
chroma and the Bar and Beat Tracker Vamp plugin. We
show that preferring harmonically valid combinations of
chords yields better chord transcriptions than just picking
the best matching chord at each beat, even after smooth-
ing the chord changes with a merging function. This result
is good, especially if we consider that we have only con-
nected the different technologies without extensively tun-
ing their parameters.

It is difficult to compare the results of this paper with
current the state-of-the-art in an absolute manner; this must
be done in a next iteration of the MIREX challenge. The
dataset used in this paper closely resembles the one used
in MIREX in 2010 and 2011. However, although the same
ground-truth is used, many different remastered editions
of the Beatles and Queen songs exist, and some editions
are known to deviate from these ground-truth annotations.
We used the LabROSA script to improve the alignment be-
tween our Beatles corpus and the ground-truth, 13 but it is
hard to tell whether the results in Section 4 have been influ-
enced by remastering artifacts. However, if this is the case,
the results of all compared systems are affected equally.

In the 2011 edition of MIREX, all systems were eval-
uated as described in Section 4, yielding RCO values be-
tween 0.126 and 0.829, and a deliberately over-fitted re-
sult yielding an RCO of 0.976. Clearly, a system with
a model trained in this manner will very likely perform
poorly on unseen data. All algorithms that returned an
RCO above 0.740 were HMM-based machine learning ap-
proaches, and it is unclear how much they have over-fitted
on the used dataset. The chances that the HARMTRACE

harmony model is over-fitting the used dataset are very
low. After all, candidate chord sequences are not selected
based on how often they occur in a training sample, but
only based on whether they follow the general rules of
tonal harmony. Another benefit of the knowledge-based
approach presented in this article, is that we can analyse
why certain chord sequences are preferred over others and
reason about whether these choices are justified. An HMM
remains a black box, which does not provide insights into
the choices made.

Nevertheless, there is still room for improvement. Per-
haps that using different signal processing parameters, or
different plugins improve the results. Moreover, we ex-
pect that carefully adjusting the parameters and tailoring
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the modules to maximise their interoperability will result
in an increase of performance. Also, Mauch et al. [9] suc-
cessfully improved chord transcription performance by av-
eraging the chroma vectors of segments that were classified
as having very similar harmonies. Such a technique could
possibly improve the results in the MPTREE system as well.
We have shown that connecting state-of-the-art low-level
feature extraction methods to high-level symbolic knowl-
edge systems offers new capabilities to boost the analysis
and retrieval of musical audio. We also expect similar com-
binations to be able to improve other common MIR related
tasks, such as cover-song finding, music transcription, and
structural analysis.
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