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Abstract. These lecture notes introduce libraries for datatype-generic program-
ming in Haskell. We introduce three characteristic generic programming libraries:
lightweight implementation of generics and dynamics, extensible and modular
generics for the masses, and scrap your boilerplate. We show how to use them
to use and write generic programs. In the case studies for the different libraries
we introduce generic components of a medium-sized application which assists a
student in solving mathematical exercises.

1 Introduction

In the development of software, structuring data plays an important role. Many pro-
gramming methods and software development tools center around creating a datatype
(or XML schema, UML model, class, grammar, etc.). Once the structure of the data
has been designed, a software developer adds functionality to the datatypes. There is
always some functionality that is specific for a datatype, and part of the reason why the
datatype has been designed in the first place. Other functionality is similar or even the
same on many datatypes, following common programming patterns. Examples of such
patterns are:

– in a possibly large value of a complicated datatype (for example for representing
the structure of a company), applying a given action at all occurrences of a par-
ticular constructor (e.g., adding or updating zip codes at all occurrences of street
addresses) while leaving the rest of the value unchanged;

– serializing a value of a datatype, or comparing two values of a datatype for equality,
functionality that depends only on the structure of the datatype;

– adapting data access functions after a datatype has changed, something that often
involves modifying large amounts of existing code.

Generic programming addresses these high-level programming patterns. We also use
the term datatype-generic programming [Gibbons, 2007] to distinguish the field from
Java generics, Ada generic packages, generic programming in C++ STL, etc. Using
generic programming, we can easily implement traversals in which a user is only in-
terested in a small part of a possibly large value, functions which are naturally defined
by induction on the structure of datatypes, and functions that automatically adapt to a
changing datatype. Larger examples of generic programming include XML tools, test-
ing frameworks, debuggers, and data conversion tools.

Often an instance of a datatype-generic program on a particular datatype is obtained
by implementing the instance by hand, a boring and error-prone task, which reduces
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programmers’ productivity. Some programming languages provide standard implemen-
tations of basic datatype-generic programs such as equality of two values and print-
ing a value. In this case, the programs are integrated into the language, and cannot be
extended or adapted. So, how can we define datatype-generic programs ourselves?

More than a decade ago the first programming languages appeared that supported
the definition of datatype-generic programs. Using these programming languages it is
possible to define a generic program, which can then be used on a particular datatype
without further work. Although these languages allow us to define our own generic
programs, they have never grown out of the research prototype phase, and most cannot
be used anymore.

The rich type system of Haskell allows us to write a number of datatype-generic pro-
grams in the language itself. The power of classes, constructor classes, functional de-
pendencies, generalized algebraic datatypes, and other advanced language constructs of
Haskell is impressive, and since 2001 we have seen at least 10 proposals for generic pro-
gramming libraries in Haskell using one or more of these advanced constructs. Using a
library instead of a separate programming language for generic programming has many
advantages. The main advantages are that a user does not need a separate compiler for
generic programs and that generic programs can be used out of the box. Furthermore,
a library is much easier to ship, support, and maintain than a programming language,
which makes the risk of using generic programs smaller. A library might be accompa-
nied by tools that depend on non-standard language extensions, for example for gen-
erating embedding-projection pairs, but the core is Haskell. The loss of expressiveness
compared with a generic programming language such as Generic Haskell is limited.

These lecture notes introduce generic programming in Haskell using generic pro-
gramming libraries. We introduce several characteristic generic programming libraries,
and we show how to write generic programs using these libraries. Furthermore, in the
case studies for the different libraries we introduce generic components of a medium-
sized application which assists a student in solving mathematical exercises. We have
included several exercises in these lecture notes. The answers to these exercises can be
found in the technical report accompanying these notes [Jeuring et al., 2008].

These notes are organised as follows. Section 2 puts generic programming into con-
text. It introduces a number of variations on the theme of generics as well as demon-
strates how each may be used in Haskell. Section 3 starts our focus on datatype-generic
programming by discussing the world of datatypes supported by Haskell and common
extensions. In Section 4, we introduce libraries for generic programming and briefly
discuss the criteria we used to select the libraries covered in the following three sec-
tions. Section 5 starts the discussion of libraries with Lightweight Implementation of
Generics and Dynamics (LIGD); however, we leave out the dynamics since we focus
on generics in these lecture notes. Section 6 continues with a look at Extensible and
Modular Generics for the Masses (EMGM), a library using the same view as LIGD but
implemented with a different mechanism. Section 7 examines Scrap Your Boilerplate
(SYB), a library implemented with combinators and quite different from LIGD and
EMGM. After describing each library individually, we provide an abridged comparison
of them in Section 8. In Section 9 we conclude with some suggested reading and some
thoughts about the future of generic programming libraries.
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2 Generic Programming in Context (and in Haskell)

Generic programming has developed as a technique for increasing the amount and scale
of reuse in code while still preserving type safety. The term “generic” is highly over-
loaded in computer science; however, broadly speaking, most uses involve some sort of
parametrisation. A generic program abstracts over the differences in separate but sim-
ilar programs. In order to arrive at specific programs, one instantiates the parameter in
various ways. It is the type of the parameter that distinguishes each variant of generic
programming.

Gibbons [2007] lists seven categories of generic programming. In this section, we
revisit these with an additional twist: we look at how each may be implemented in
Haskell.

Each of the following sections is titled according to the type of the parameter of the
generic abstraction. In each, we provide a description of that particular form of generics
along with an example of how to apply the technique.

2.1 Value

The most basic form of generic programming is to parametrise a computation by values.
The idea goes by various names in programming languages (procedure, subroutine,
function, etc.), and it is a fundamental element in mathematics. While a function is not
often considered under the definition of “generic,” it is perfectly reasonable to model
other forms of genericity as functions. The generalization is given by the function g(x)
in which a generic component g is parametrised by some entity x. Instantiation of the
generic component is then analogous to application of a function.

Functions come naturally in Haskell. For example, here is function that takes two
boolean values as arguments and determines their basic equality.

eqBool :: Bool→ Bool→ Bool

eqBool x y = (not x ∧ not y) ∨ (x ∧ y)

We take this opportunity to introduce a few themes used in these lecture notes. We use a
stylized form of Haskell that is not necessarily what one would type into a file. Here, we
add a subscript, which can simply be typed, and use the symbols (∧) and (∨), which
translate directly to the standard operators (&&) and (||).

As much as possible, we attempt to use the same functions for our examples, so that
the similarities or differences are more evident. Equality is one such running example
used throughout the text.

2.2 Function

If a function is a first-class citizen in a programming language, parametrisation of one
function by another function is exactly the same as parametrisation by value. However,
we explicitly mention this category because it enables abstraction over control flow. The



168 J. Jeuring et al.

full power of function parameters can be seen in the higher-order functions of languages
such as Haskell and ML.

Suppose we have functions defining the logical conjunction and disjunction of boolean
values.

and :: List Bool→ Bool

and Nil = True
and (Cons p ps) = p ∧ and ps

or :: List Bool→ Bool

or Nil = False
or (Cons p ps) = p ∨ or ps

These two functions exhibit the same recursive pattern. To abstract from this pattern,
we abstract over the differences between and and or using a higher-order function. The
pattern that is extracted is known in the Haskell standard library as foldr (“fold from the
right”).

foldr :: (a→ b→ b)→ b→ List a→ b

foldr f n Nil = n
foldr f n (Cons x xs) = f x (foldr f n xs)

The foldr captures the essence of the recursion in the and and or by accepting parameters
for the Cons and Nil cases. We can then redefine and and or in simpler terms using foldr.

and = foldr (∧) True
or = foldr (∨) False

2.3 Type

Commonly known as polymorphism, genericity by type refers to both type abstractions
(types parametrised by other types) and polymorphic functions (functions with poly-
morphic types).

Haskell1has excellent support for parametrised datatypes and polymorphic functions.
The canonical example of the former is List:

data List a = Nil | Cons a (List a)

List a is a datatype parametrised by some type a. It is one of a class of datatypes often
called “container” types because they provide structure for storing elements of some
arbitrary type.

A typical polymorphic function is length:

length :: List a→ Int

length Nil = 0
length (Cons x xs) = 1 + length xs

1 Specifically, Haskell supports parametric polymorphism. There are other flavors of polymor-
phism such as subtype polymorphism that we elide.
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The function length can be applied to a value of type List a, and it will return the
number of a elements.

An important point to note about parametrised datatypes and polymorphic functions
is that they have no knowledge of the parameter. We later discuss other forms of gener-
icity that support increased amounts of information about the parameter.

2.4 Interface

A generic program may abstract over a given set of requirements. In this case, a specific
program can only be instantiated by parameters that conform to these requirements, and
the generic program remains unaware of any unspecified aspects. Gibbons calls the set
of required operations the “structure” of the parameter; however, we think this may
easily be confused with generics by the shape of a datatype (in Section 2.7). Instead,
we use interface as the set of requirements needed for instantiation.

Haskell supports a form of interface using type classes and constraints on func-
tions [Wadler and Blott, 1989], which we illustrate with equality. Equality is not re-
stricted to a single type, and in fact, many different datatypes support equality. But
unlike the polymorphic length, equality on lists for example requires inspection of the
elements. The code below defines the class of types that support equality (( )) and
inequality (( � )).

class Eq a where
( ), ( � ) :: a→ a→ Bool

a b = not (a � b)
a � b = not (a b)

This type class definition includes the types of the interface operations and some (op-
tional) default implementations. For a datatype such as List a to support the operations
in the class Eq, we create an instance of it.

instance (Eq a)⇒ Eq (List a) where
Nil Nil = True
(Cons x xs) (Cons y ys) = x y ∧ xs ys

= False

Notice that our instance for List a requires an instance for a. This is indicated by the
context (Eq a)⇒.

Methods in type classes and functions that use these methods require a context as
well. Consider the observable type of the equality method.

( ) :: (Eq a)⇒ a→ a→ Bool

This function specifies that the type parameter a must be an instance of the Eq class.
In other words, the type substituted for a must implement the interface specified by Eq.
This approach is called ad-hoc polymorphism. Relatedly, since each recursive call in the
definition of the function ( ) may have a different type, we also describe the function
as having polymorphic recursion.
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2.5 Property

Gibbons expands the concept of generic programming to include the specifications of
programs. These properties are “generic” in the sense that they may hold for multiple
implementations. Properties may be informally or formally defined, and depending on
the language or tool support, they may be encoded into a program, used as part of the
testing process, or simply appear as text.

A simple example of a property can be found by looking at the methods of the Eq type
class defined in Section 2.4: a programmer with a classical view on logic would expect
that x y≡ not (x � y). This property should hold for all instances of Eq to ensure
that an instance only needs to define one or the other. However, Haskell’s type system
provides no guarantee of this. The functions ( ) and ( � ) are provided as separate
methods to allow for the definition of either (for simplicity) or both (for optimization),
and the compiler cannot verify the above relationship. This informal specification relies
on programmers implementing the instances of Eq such that the property holds.

There are other examples of properties, such as the well-known monad laws [Wadler,
1990], but many of them cannot be implemented directly in Haskell. It is possible, how-
ever, to look at a property as an extension of an interface from Section 2.4 if we allow
for evaluation in the interface. This can be done in a language with a more expressive
type system such as Coq [Bertot and Castéran, 2004] or Agda [Norell, 2007].

2.6 Program Representation

There are numerous techniques in which one program is parametrised by the represen-
tation of another program (or its own). This area includes:

– Code generation, such as the generation of parsers and lexical analysers. Happy
[Marlow and Gill, 1997] and Alex [Dornan et al., 2003] are Haskell programs for
parser generation and lexical analysis, respectively.

– Reflection or the ability of a program to observe and modify its own structure and
behavior. Reflection has been popularized by programming languages that support
some dynamic type checking such as Java [Forman and Danforth, 1999], but some
attempts have also been made in Haskell [Lämmel and Peyton Jones, 2004].

– Templates in C++ [Alexandrescu, 2001] and multi-stage programming [Taha, 1999]
are other techniques.

Gibbons labels these ideas as genericity by stage; however, some techniques such as
reflection do not immediately lend themselves to being staged. We think this category
of is better described as metaprogramming or generic programming in which the pa-
rameter is the representation of some program.

Partly inspired by C++ templates and the multi-stage programming language MetaML
[Sheard, 1999], Template Haskell provides a metaprogramming extension to Haskell 98
[Sheard and Peyton Jones, 2002].

We introduce the concept with an example of writing selection functions for tuples
of different arities. The standard library provides fst :: (a, b)→ a and snd :: (a, b)→ b
since pairs are the most common form of tuples, but for triples, quadruples, etc., we need
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to write a new function each time. In other words, we want to automatically generate
functions such as these:

fst3 = λ(x, , ) → x
snd4 = λ( , x, , )→ x

Using Template Haskell, we can write:

fst3 = $ (sel 1 3)
snd4 = $ (sel 2 4)

This demonstrates the use of the “splice” syntax, $(...), to evaluate the enclosed expres-
sion at compile time. Each call to $(sel i n) is expanded to a function that selects the
i-th component of a n-tuple. Consider the following implementation2:

sel :: Int→ Int→ ExpQ

sel i n = lamE [pat ] body
where pat = tupP (map varP vars)

body = varE (vars !! (i− 1))
vars = [mkName ("a"++ show j) | j← [1 . . n ] ]

Function sel creates an abstract syntax recipe of the form λ(a1, a2, ..., ai, ..., an) → ai
with a lambda expression (lamE), a tuple pattern (tupP), variable patterns (varP), and
a variable expression (varE).

Template Haskell is type-safe, and a well-typed program will not “go wrong” at run-
time [Milner, 1978]. Initially, splice code is type-checked before compilation, and then
the entire program is also type-checked after splice insertion. Compiling the example
above may fail for reasons such as the function sel not type-checking or the generated
code for $(sel i n) not type-checking.

Template Haskell has been explored for other uses in generic programming. Most
notably, it is possible to prototype datatype-generic extensions to Haskell with Template
Haskell [Norell and Jansson, 2004b].

2.7 Shape

Genericity by shape is, in fact, the focus of these notes. The shape parameter refers to
the shape or structure of data. Broadly speaking, if all data has a common underlying
set of structural elements, we can write functions that work with those elements. Thus,
such functions abstract over any values that can be described by the same shape.

We return again to the example of equality. So far, we have seen two different im-
plementations, one for Bool and one for List, while in fact equality can be defined
once generically for many datatypes. In Haskell this generic definition is used when a
datatype is annotated with deriving Eq, but to give you a taste of how this might work
in a library, let us look at the shape of some types.

2 The code for sel is derived from the original example [Sheard and Peyton Jones, 2002] with
modifications to simplify it and to conform to the Language.Haskell.TH library included with
GHC 6.8.2.
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Intuitively, we can visualize the structural elements by reviewing the syntax for the
declaration of the List datatype.

data List a = Nil | Cons a (List a)

First, a List value is either a Nil or a Cons. This choice between constructors is called
a sum and denoted by the + symbol in our visualization. Second, each constructor is
applied to zero or more arguments. The Nil constructor takes no parameters and has
the special designator of unit represented by 1. Cons, on the other hand, is applied
to two arguments. We use a product, indicated by the symbol ×, in this case. The
representation for List as a whole appears as follows:

type List◦ a = 1 + (a× List a)

We have now stripped the datatype definition to some basic syntactic elements. Not only
can these elements describe the simple List datatype, they also support more complex
examples:

data Map k a = Tip | Bin Int k a (Map k a) (Map k a)
type Map◦ k a = 1 + (Int× (k× (a× (Map k a×Map k a))))

The Map datatype from the standard libraries introduces a few new aspects of our syn-
tax. Namely, we can reference other types by name (Int), and if a constructor has more
than two arguments (Bin), it is represented using a right-associative, nested, product.
Furthermore, we reuse the type Map itself in the representation for Map.

The sum of products view described above can be used to inductively define func-
tions. We describe the specifics of this for each library in more detail, but for a taste
of this process, we define a function in Generic Haskell [Löh, 2004], a language that
extends Haskell with syntactic support for datatype-generic programming. Here is equal-
ity defined as a generic function:

eq{|a :: �|} :: (eq{|a|})⇒ a→ a→ Bool

eq{|Int|} x y = eqInt x y
eq{|Char|} c d = eqChar c d
eq{|Unit|} Unit Unit = True
eq{|a + b|} (Inl x) (Inl y) = eq{|a|} x y
eq{|a + b|} (Inr x) (Inr y) = eq{|b|} x y
eq{|a + b|} = False
eq{|a× b|} (x1 × y1) (x2 × y2) = eq{|a|} x1 x2 ∧ eq{|b|} y1 y2

Notice how eq{|a :: �|} uses pattern matching on the same structural elements introduced
above, which are now types enclosed in {||}, to perform case analysis. Looking at each
case, we see that the type parameter (e.g. a× b) enables the expansion of the value-
level structure of the arguments (e.g. x1 × y1), thus permitting us to write a separate
test of equality specific to each element (e.g. eq{|a|} x1 x2 ∧ eq{|b|} y1 y2). We explore
these ideas further in the discussion on the libraries LIGD (Section 5) and EMGM
(Section 6). For more information on defining generic functions in Generic Haskell,
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see Löh [2004] and Hinze and Jeuring [2003a,b]. Also note that Generic Haskell is
not the only language extension to datatype-generic programming. A comparison of
approaches can be found in Hinze et al. [2007].

There are a number of generic views other than the sum of products. For exam-
ple, we may regard a datatype as a fixed point, allowing us to make all recursion
in the datatype explicit. Another example is the spine view that we describe in rela-
tion to the SYB library (Section 7). For a more in-depth study of generic views, refer
to [Holdermans et al., 2006].

In this section, we introduced a variety of techniques that fall under the heading of
generic programming; however, this is assuredly not a complete list. For example, re-
search into types that are parametrised by values, often called dependent types, may
be also considered “generic.” Instead of a thorough description, however, this back-
ground should make clear where these lecture notes fit in the broader context of generic
programming.

In the next section, we provide more background on the fundamental component of
datatype-generic programming: the datatype.

3 The World of Haskell Datatypes

Datatypes play a central role in programming in Haskell. Solving a problem often con-
sists of designing a datatype, and defining functionality on that datatype. Haskell offers
a powerful construct for defining datatypes: data. Haskell also offers two other con-
structs: type to introduce type synonyms and newtype, a restricted version of data.

Datatypes come in many variations: we have finite, regular, nested, and many more
kinds of datatypes. This section introduces many of these variations of datatypes by
example, and is an updated version of a similar section in Hinze and Jeuring [2003b].
Not all datatypes are pure Haskell 98, some require extensions to Haskell. Many of
these extensions are supported by most Haskell compilers, some only by GHC. On the
way, we explain kinds and show how they are used to classify types. For most of the
datatypes we introduce, we define an equality function. As we will see, the definitions
of equality on the different datatypes follow a similar pattern. This pattern will also be
used to define generic programs for equality in later sections covering LIGD (Section 5)
and EMGM (Section 6).

3.1 Monomorphic Datatypes

We start our journey through datatypes with lists containing values of a particular type.
For example, in the previous section we have defined the datatype of lists of booleans:

data ListB = NilB | ConsB Bool ListB

We define a new datatype, called ListB, which has two kinds of values: an empty list
(represented by the constructor NilB), or a list consisting of a boolean value in front of
another ListB. This datatype is the same as Haskell’s predefined list datatype containing
booleans, with [ ] and (:) as constructors. Since the datatype ListB does not take any type
parameters, it has base kind �. Other examples of datatypes of kind � are Int, Char, etc.
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Here is the equality function on this datatype:

eqListB :: ListB → ListB → Bool

eqListB NilB NilB = True
eqListB (ConsB b1 l1) (ConsB b2 l2) = eqBool b1 b2 ∧ eqListB l1 l2
eqListB

= False

Two empty lists are equal, and two nonempty lists are equal if their head elements are
the same (which we check using equality on Bool) and their tails are equal. An empty
list and a nonempty list are unequal.

3.2 Parametric Polymorphic Datatypes

We abstract from the datatype of booleans in the type ListB to obtain parametric poly-
morphic lists.

data List a = Nil | Cons a (List a)

Compared with ListB, the List a datatype has a different structure: the kind of List is
� → �. Kinds classify types, just as types classify values. A kind can either be � (base
kind) or κ → ν, where κ and ν are kinds. In Haskell, only the base kind is inhabited,
which means there are only values of types of kind �. Since List takes a base type as
argument, it has the functional kind � → �. The type variable a must be a base type
since it appears as a value (as first argument to the Cons constructor). In this way, a type
of functional kind (such as List) can be fully-applied to create a type of base kind (such
as List Int).

Equality on List is almost the same as equality on ListB.

eqList :: (a→ a→ Bool)→ List a→ List a→ Bool

eqList eqa Nil Nil = True
eqList eqa (Cons x1 l1) (Cons x2 l2) = eqa x1 x2 ∧ eqList eqa l1 l2
eqList = False

The only difference with equality on ListB is that we need to have some means of deter-
mining equality on the elements of the list, so we need an additional equality function
of type (a→ a→ Bool) as parameter3.

3.3 Families and Mutually Recursive Datatypes

A family of datatypes is a set of datatypes that may use each other. We can define a
simplified representation of a system of linear equations using a non-recursive family
of datatypes. A system of linear equations is a list of equations, each consisting of a
pair linear expressions. For example, here is a system of three equations.

3 Using Haskell’s type classes, this would correspond to replacing the type of the first argument
in the type of eqList by an Eq a ⇒ constraint. The class constraint is later transformed by the
compiler into an additional argument of type (a→ a→ Bool) to the function.
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x− y = 1
x + y + z = 7

2 x + 3 y + z = 5

For simplicity, we assume linear expressions are values of a datatype for arithmetic
expressions, Expr a. An arithmetic expression abstracts over the type of constants, typ-
ically an instance of the Num class, and is a variable, a literal, or the addition, subtrac-
tion, multiplication, or division of two arithmetic expressions.

type LinearSystem = List LinearExpr

data LinearExpr = Equation (Expr Int) (Expr Int)
infixl 6 ×,÷
infixl 5 +,−
data Expr a = Var String

| Lit a
| Expr a + Expr a
| Expr a− Expr a
| Expr a× Expr a
| Expr a÷ Expr a

The equality function eqExpr for LinearSystem is straightforward and omitted.
Datatypes in Haskell may also be mutually recursive, as can be seen in the following

example. A forest is either empty or a tree followed by a forest, and a tree is either
empty or a node of a forest:

data Tree a = Empty | Node a (Forest a)
data Forest a = Nil | Cons (Tree a) (Forest a)

Defining the equality function for these datatypes amounts to defining the equality func-
tion for each datatype separately. The result is a set of mutually recursive functions:

eqTree :: (a→ a→ Bool)→ Tree a→ Tree a→ Bool

eqTree eqa Empty Empty = True
eqTree eqa (Node a1 f1) (Node a2 f2) = eqa a1 a2 ∧ eqForest eqa f1 f2
eqTree = False

eqForest :: (a→ a→ Bool)→ Forest a→ Forest a→ Bool

eqForest eqa Nil Nil = True
eqForest eqa (Cons t1 f1) (Cons t2 f2) = eqTree eqa t1 t2 ∧ eqForest eqa f1 f2
eqForest = False

Note that although the type LinearSystem defined previously uses several other types,
it is not mutually recursive: Expr a is at the end of the hierarchy and is defined only in
terms of itself.
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3.4 Higher-Order Kinded Datatypes

A datatype uses higher-order kinds if it is parametrized over a variable of functional
kind. All the parametric datatypes we’ve seen previously took parameters of kind �.
Consider the following datatype, which represents a subset of logic expressions.

data Logics = Lit Bool
| Not Logics

| Or Logics Logics

Suppose we now want to use the fact that disjunction is associative. For this, we can
choose to encode sequences of disjunctions by means of a list. We represent our Logics

datatype as:

data LogicL = Lit Bool
| Not LogicL
| Or (List LogicL)

We can then abstract from the container type List, which contains the subexpressions,
by introducing a type argument for it.

data LogicF f = Lit Bool
| Not (LogicF f)
| Or (f (LogicF f))

We have introduced a type variable, and so LogicF does not have kind � as LogicL.
However, its kind is also not � → �, as we have seen previously in, for instance, the
List datatype, because the type argument that LogicF expects is not a base type, but a
“type transformer”. We can see in the Or constructor that f is applied to an argument.
The kind of LogicF is thus: (� → �) → �. This datatype is a higher-order kinded
datatype.

To better understand abstraction over container types, consider the following type:

type Logic′L = LogicF List

Modulo undefined values, Logic′L is isomorphic to LogicL. The type argument of LogicF
describes which “container” will be used for the elements of the Or case.

Defining equality for the Logic′L datatype is simple:

eqLogic′L :: Logic′L → Logic′L → Bool

eqLogic′L (Lit x1) (Lit x2) = eqBool x1 x2

eqLogic′L (Not x1) (Not x2) = eqLogic′L x1 x2

eqLogic′L (Or l1) (Or l2) =
length l1 length l2 ∧ and (zipWith eqLogic′L l1 l2)

eqLogic′L = False

Note that we use the zipWith :: (a → b → c) → List a → List b → List c function,
because we know the container is the list type.
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The LogicF type requires a somewhat more complicated equality function.

eqLogicF :: ( (LogicF f → LogicF f → Bool)→
f (LogicF f)→ f (LogicF f)→ Bool)→

LogicF f → LogicF f → Bool

eqLogicF
eqf (Lit x1) (Lit x2) = eqBool x1 x2

eqLogicF eqf (Not x1) (Not x2) = eqLogicF eqf x1 x2

eqLogicF eqf (Or x1) (Or x2) = eqf (eqLogicF eqf ) x1 x2

eqLogicF = False

The complexity comes from the need for a higher-order function that itself contains a
higher-order function. The function eqf provides equality on the abstracted container
type f, and it needs an equality for its element type LogicF f.

We can specialize this to equality on LogicF List as follows:

eqLogicF,List
:: LogicF List→ LogicF List→ Bool

eqLogicF,List
= eqLogicF (λf l1 l2 → and (zipWith f l1 l2))

3.5 Nested Datatypes

A regular data type is a possibly recursive, parametrised type whose recursive oc-
currences do not involve a change of type parameters. All the datatypes we have in-
troduced so far are regular. However, it is also possible to define so-called nested
datatypes [Bird and Meertens, 1998], in which recursive occurrences of the datatype
may have other type arguments than the datatype being defined. Perfectly balanced
binary trees are an example of such a datatype.

data Perfect a = Leaf a | Node (Perfect (a, a))

Any value of this datatype is a full binary tree in which all leaves are at the same
depth. This is attained by using the pair constructor in the recursive call for the Node
constructor. An example of such tree is:

perfect = Node (Node (Node (Leaf (((1, 2), (3, 4)), ((5, 6), (7, 8))))))

Here is the equality function on Perfect:

eqPerfect :: (a→ a→ Bool)→ Perfect a→ Perfect a→ Bool

eqPerfect eqa (Leaf x1) (Leaf x2) = eqa x1 x2

eqPerfect eqa (Node x1) (Node x2) = eqPerfect (eqPair eqa) x1 x2

eqPerfect = False

eqPair :: (a→ a→ Bool)→ (a, a)→ (a, a)→ Bool
eqPair eqa (x1, x2) (y1, y2) = eqa x1 x2 ∧ eqa y1 y2

This definition is again very similar to the equality on datatypes we have introduced
before. In our case, the container type is the pair of two values of the same type, so in
the Node case we use equality on this type (eqPair).
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3.6 Existentially Quantified Datatypes

Many of the datatypes we have seen take arguments, and in the type of the constructors
of these datatypes, those type arguments are universally quantified. For example, the
constructor Cons of the datatype List a has type a → List a → List a for all types
a. However, we can also use existential types, which “hide” a type variable that only
occurs under a constructor. Consider the following example:

data Dynamic = ∀a . Dyn (Rep a) a

The type Dynamic encapsulates a type a and its representation, a value of type Rep a.
We will encounter the datatype Rep a later in these lecture notes (Section 5), where
it is used to convert between datatypes and their run-time representations. Despite the
use of the ∀ symbol, the type variable a is said to be existentially quantified because
it is only available inside the constructor—Dynamic has kind �. Existential datatypes
are typically used to encapsulate some type with its corresponding actions: in the above
example, the only thing we can do with a Dynamic is to inspect its representation. Other
important applications of existentially quantified datatypes include the implementation
of abstract datatypes, which encapsulate a type together with a set of operations. Exis-
tential datatypes are not part of the Haskell 98 standard, but they are a fairly common
extension.

Since an existentially quantified datatype may hide the type of some of its compo-
nents, the definition of equality may be problematic. If we cannot inspect a component,
we cannot compare it. Conversely, we can only compare two values of an existentially
quantified datatype if the operations provided by the constructor allow us to compare
them. For example, if the only operation provided by the constructor is a string repre-
sentation of the value, we can only compare the string representation of two values, but
not the values themselves. Therefore equality can only be defined as the equality of the
visible components of the existentially quantified datatype.

3.7 Generalized Algebraic Datatypes

Another powerful extension to the Haskell 98 standard are generalized algebraic
datatypes (GADTs). A GADT is a datatype in which different constructors may have
related but different result types. Consider the following example, where we combine
the datatypes Logics and Expr shown before in a datatype for statements:

data Stat a where
Val :: Expr Int → Stat (Expr Int)
Term :: Logics → Stat Logics

If :: Stat Logics → Stat a → Stat a→ Stat a
Write :: Stat a → Stat ()
Seq :: Stat a → Stat b→ Stat b

The new aspect here is the ability to give each constructor a different result type of
the form Stat x. This has the advantage that we can describe the type of the different
constructors more precisely. For example, the type of the If constructor now says that
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the first argument of the If returns a logic statement, and the statements returned in the
“then” and “else” branches may be of any type, as long as they have the same type.

Defining equality of two statements is still a matter of repeating similar code:

eqStat :: Stat a→ Stat b→ Bool

eqStat (Val x1) (Val x2) = eqExpr ( ) x1 x2

eqStat (Term x1) (Term x2) = eqLogic x1 x2

eqStat (If x1 x2 x3) (If x′1 x′2 x′3) = eqStat x1 x′1 ∧ eqStat x2 x′2 ∧ eqStat x3 x′3
eqStat (Write x1) (Write x2) = eqStat x1 x2
eqStat (Seq x1 x2) (Seq x′1 x′2) = eqStat x1 x′1 ∧ eqStat x2 x′2
eqStat = False

We have shown many varieties of datatypes and the example of the equality function,
which offers functionality needed on many datatypes. We have seen that we can define
the equality functions ourselves, but the code quickly becomes repetitive and tedious.
Furthermore, if a datatype changes, the definition of the equality function has to change
accordingly. This is not only inefficient and time-consuming but also error-prone. The
generic programming libraries introduced in the rest of these lecture notes will solve
this problem.

4 Libraries for Generic Programming

Recently, an extensive comparison of generic programming libraries has been per-
formed [Rodriguez et al., 2008b, Rodriguez, 2009]. In these notes we will discuss three
of those libraries: a Lightweight Implementation of Generics and Dynamics, Extensi-
ble and Modular Generics for the Masses, and Scrap Your Boilerplate. We focus on
these three libraries for a number of reasons. First, we think these libraries are repre-
sentative examples: one library explicitly passes a type representation as argument to a
generic function, another relies on the type class mechanism, and the third is traversal-
and combinator-based. Furthermore, all three have been used for a number of generic
functions, and are relatively easy to use for parts of the lab exercise given in these
notes. Finally, all three of them can express many generic functions; the Uniplate li-
brary [Mitchell and Runciman, 2007] is also representative and easy to use, but Scrap
Your Boilerplate is more powerful.

The example libraries show different ways to implement the essential ingredients
of generic programming libraries. Support for generic programming consists of three
essential ingredients [Hinze and Löh, 2009]: a run-time type representation, a generic
view on data, and support for overloading.

A type-indexed function (TIF) is a function that is defined on every type of a family
of types. We say that the types in this family index the TIF, and we call the type family
a universe. The run-time representation of types determines the universe on which we
can pattern match in a type-indexed function. The larger this universe, the more types
the function can be applied to.

A type-indexed function only works on the universe on which it is defined. If a new
datatype is defined, the type-indexed function cannot be used on this new datatype.
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There are two ways to make it work on the new datatype. A non-generic extension
of the universe of a TIF requires a type-specific, ad-hoc case for the new datatype. A
generic extension (or a generic view) of a universe of a TIF requires to express the
new datatype in terms of the universe of the TIF so that the TIF can be used on the
new datatype without a type-specific case. A TIF combined with a generic extension is
called a generic function.

An overloaded function is a function that analyses types to exhibit type-specific be-
havior. Type-indexed and generic functions are special cases of overloaded functions.
Many generic functions even have type-specific behavior: lists are printed in a non-
generic way by the generic pretty-printer defined by deriving Show in Haskell.

In the next sections we will see how to encode these basic ingredients in the three
libraries we introduce. For each library, we present its run-time type representation, the
generic view on data and how overloading is achieved.

Each of the libraries encodes the basic ingredients in a particular way. However,
an encoding of a generic view on datatypes is largely orthogonal to an encoding of
overloading, and we can achieve variants of the libraries described in the following
sections by combining the basic ingredients differently [Hinze and Löh, 2009].

5 Lightweight Implementation of Generics and Dynamics

In this section, we discuss our first library for datatype-generic programming in Haskell.
The library, Lightweight Implementation of Generics and Dynamics [Cheney and Hinze,
2002] or LIGD, serves as a good introduction to many of the concepts necessary
for generic programming in a library. For example, it uses a simple encoding of the struc-
tural elements for the sum-of-products view that we saw in Section 2.7. Also,
LIGD can represent many of the datatypes described in Section 3 with the exceptions
being existentially quantified types and generalized algebraic datatypes (GADTs).
Cheney and Hinze [2002] demonstrate a method for storing dynamically typed values
(such as the one in Section 3.6); however, here we focus only on the generic representa-
tion. Lastly, we have updated the representation previously presented to use a GADT for
type safety. As a side effect, it provides a good example of the material in Section 3.7.

To initiate our discussion of LIGD in Section 5.1, we first introduce an example func-
tion, in this case equality, to give a taste of how the library works. Then, Section 5.2
delves into the most basic representation used for LIGD. Next in Section 5.3, we show
the important component necessary to support translating between the representation
and Haskell datatypes. In Section 5.4, we describe how to implement a function differ-
ently for a certain type using overloading. Finally, Section 5.5 describes a number of
useful generic functions (and how the library supports them), and Section 5.6 describes
a particular case study using an exercise assistant.

5.1 An Example Function

The equality function in LIGD takes three arguments: the two values for comparison
and a representation of the type of these values.

eq :: Rep a→ a→ a→ Bool
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The function eq is defined by pattern matching on the type representation type Rep,
which contains constructors for type representations, such as RInt, RChar, etc. It is
defined in the following subsection.

eq (RInt ) i j = eqInt i j
eq (RChar) c d = eqChar c d
eq (RUnit) Unit Unit = True
eq (RSum ra rb) (L a1) (L a2) = eq ra a1 a2
eq (RSum ra rb) (R b1) (R b2) = eq rb b1 b2
eq (RSum ra rb) = False
eq (RProd ra rb) (a1 :×: b1) (a2 :×: b2) = eq ra a1 a2 ∧ eq rb b1 b2

Notice the similarities to the Generic Haskell function defined in Section 2.7. We have
unit, sum, and product types, and the function is indexed by a representation of them,
in this case the GADT Rep. By pattern matching on the constructors of Rep, the type
checker is informed of the types of the remaining arguments, thus allowing us to pattern
match on the structural elements.

Let us look at eq on a case-by-case basis. First, we have the primitive types Int
and Char. These are not represented generically; rather, their values are stored, and
we depend on the primitive functions eqInt and eqChar. Next, we have the collection of
generic structural elements: unit, sum, and product. Two Unit values are always equal
(ignoring undefined values). A sum presents two alternatives, L and R. If the structure is
the same, then we recursively check equality of the contents; otherwise, the alternatives
cannot be equal. In the last case, a product is only equal to another product if their
components are both equal.

5.2 Run-Time Type Representation

The eq function is a type-indexed function with a run-time type representation as its
first argument — it need not appear in that position, but that is standard practice. The
representation utilizes a few key types for structure.

data Unit = Unit
data a :+: b = L a | R b
data a :×: b = a :×: b

infixr 5 :+:
infixr 6 :×:

These three types represent the values of the unit, sum, and product, and each is isomor-
phic to a standard Haskell datatype: Unit to (), (:+:) to Either, and (:×:) to (, ). We use
new datatypes so as to easily distinguish the world of type representations and world of
types we want to represent.

The GADT Rep uses the above datatypes to represent the structure of types.
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data Rep t where
RInt :: Rep Int
RChar :: Rep Char
RUnit :: Rep Unit
RSum :: Rep a→ Rep b→ Rep (a :+: b)
RProd :: Rep a→ Rep b→ Rep (a :×: b)

The constructors in Rep define the universe of LIGD: the structural elements together
with basic types. Of course, there are other basic types such as Float and Double, but
their use is similar, and we ignore them for brevity.

Cheney and Hinze [2002] developed the original LIGD before GADTs had been in-
troduced into GHC. They instead used an existentially quantified datatype. Using a
GADT has the advantage that case analysis on types can be implemented by pattern
matching, a familiar construct to functional programmers.

5.3 Going Generic: Universe Extension

If we define a datatype, how can we use our type-indexed function on this new datatype?
In LIGD (and many other generic programming libraries), the introduction of a new
datatype does not require redefinition or extension of all existing generic functions.
We merely need to describe the new datatype to the library, and all existing and future
generic functions will be able to handle it.

In order to add arbitrary datatypes to the LIGD universe, we extend Rep with the
RType constructor.

data Rep t where
. . .
RType :: EP d r→ Rep r→ Rep d

The type r provides the structure representation for some datatype d. This indicates that
r is isomorphic to d, and the isomorphism is witnessed by an embedding-projection
pair.

data EP d r = EP{ from :: (d→ r), to :: (r→ d)}
The type EP is a pair of functions for converting d values to r values and back. An EP
value should preserve the properties (as described in Section 2.5) that from . to≡ id and
to . from≡ id.

As mentioned in Section 2.7, we can represent constructors by nested sums and
fields by nested products. To give an example, the isomorphic representation type for
List a is:

type RList a = Unit :+: a :×: List a

The functions for the embedding-projection are:

fromList :: List a→ RList a

fromList Nil = L Unit
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fromList (Cons a as) = R (a :×: as)

toList :: RList a→ List a

toList (L Unit) = Nil
toList (R (a :×: as)) = Cons a as

The components of the pair are not embedded in the universe. The reason for this is that
LIGD does not model recursion explicitly. This is sometimes called a shallow represen-
tation. In LIGD, a structure representation type is expressed in terms of the basic type
representation types Int, Char, Unit, (:+:), and (:×:), and it may refer back to the type
that is represented, argument types, and other types that have been represented. As a
consequence, it is easy to represent mutually recursive datatypes as introduced in Sec-
tion 3.3. Some generic programming libraries, such as PolyLib [Norell and Jansson,
2004a], use a deep representation of datatypes, in which the arguments of the struc-
ture representation types are embedded in the universe as well. This makes it easier
to define some generic functions, but much harder to embed families of datatypes and
mutually recursive datatypes. However, the very recent generic programming library
multirec [Rodriguez et al., 2009] shows how to overcome this limitation.

To extend the universe to lists, we write a type representation using RType:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum RUnit (RProd ra (rList ra)))

Given the definition of equality in Section 5.1, we can now extend it to support all
representable types.

eq :: Rep a→ a→ a → Bool
. . .
eq (RType ep ra) t1 t2 = eq ra (from ep t1) (from ep t2)

This case takes arguments t1 and t2 of some type a, transforms them to their structure
representation using the embedding-projection pair ep, and applies equality to the new
values with the representation ra. Adding this line to the definition of eq turns it from a
type-indexed function into a generic function.

Note that there are two ways to extend the LIGD universe to a type T. A non-generic
extension involves adding a type-specific, ad-hoc constructor to Rep while a generic-
extension requires a structure representation for T but no additional function cases. For
example, support for Int is non-generic, and support for List is generic. The ability for
generic extension is the feature that distinguishes generic functions from type-indexed
functions.

Exercise 1. Give the representation of the datatypes Tree and Forest (defined in Sec-
tion 3.3) for LIGD. �

5.4 Support for Overloading

Now that we have seen a very basic generic function, we will explore a few other con-
cepts of generic programming in LIGD. A “show” function — serving the same purpose
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as the standard show function after deriving Show — illustrates how a library deals
with constructor names and how it deals with ad-hoc cases for particular datatypes.
First, we look at constructor names.

The type representation as developed so far does not contain any information about
constructors, and hence we cannot define a useful generic show function using this
representation. To solve this, we add an extra constructor to the structure representation
type.

data Rep t where
. . .
RCon :: String→ Rep a→ Rep a

To use this extra constructor, we modify the representation of the datatype List to in-
clude the names of the constructors:

rList :: Rep a→ Rep (List a)
rList ra = RType (EP fromList toList)

(RSum (RCon "Nil" RUnit)
(RCon "Cons" (RProd ra (rList ra))))

Here is a simple definition for a generic show function:

show :: Rep t→ t→ String
show RInt t = show t
show RChar t = show t
show RUnit t = ""
show (RSum ra rb) (L a) = show ra a
show (RSum ra rb) (R b) = show rb b
show (RProd ra rb) (a :×: b) = show ra a ++ " "++ show rb b
show (RType ep ra) t = show ra (from ep t)
show (RCon s RUnit) t = s
show (RCon s ra) t = "("++ s ++ " "++ show ra t ++ ")"

As an example of how show works, given an input of (Cons 1 (Cons 2 Nil)), it
outputs "(Cons 1 (Cons 2 Nil))". This definition works well generically, but
the output for lists seems rather verbose. Suppose we want the list to appear in the
comma-delimited fashion of the built-in Haskell lists, e.g. "[1,2]". We can do that
with an ad-hoc case for List.

For each type for which we want a generic function to behave in a non-generic way,
we extend Rep with a new constructor. For lists, we add RList:

data Rep t where
. . .
RList :: Rep a→ Rep (List a)

Now we add the following lines to the generic show function to obtain type-specific
behavior for the type List a.

show (RList ra) as = showList (show ra) True as
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This case uses the following useful higher-order function:

showList :: (a→ String)→ Bool→ List a→ String
showList showa = go

where go False Nil = "]"
go True Nil = "[]"
go False (Cons a as) = ’,’ : rest a as
go True (Cons a as) = ’[’ : rest a as

rest a as = showa a ++ go False as

Now, show (RList RInt) (Cons 1 (Cons 2 Nil)) will print a nicely reduced list format.
Note that the resulting generic function does not implement all details of deriving
Show, but it does provide the core functionality.

We adapted the type representation Rep to obtain type-specific behavior in the gshow
function. In general, it is undesirable to change a library in order to obtain special be-
havior for a single generic function on a particular datatype. Unfortunately, this is un-
avoidable in LIGD: for any generic function that needs special behavior on a particular
datatype, we have to extend the type representation with that datatype. This means
that users may decide to construct their own variant of the LIGD library, thus making
both the library and the generic functions written using it less portable and reusable.
Löh and Hinze [2006] show how to add open datatypes to Haskell. A datatype is open
if it can be extended in a different module. In a language with open datatypes, the above
problem with LIGD disappears.

5.5 Generic Functions in LIGD

This section introduces some more generic functions in LIGD, in particular some func-
tions for which we need different type representations. We start with a simple example
of a generic program.

Empty. We can generate an “empty” value for any datatype representable by LIGD.
For example, the empty value of Int is 0, and the empty value of List is Nil. The empty
function encodes these choices.

empty :: Rep a→ a

empty RInt = 0
empty RChar = ’\NUL’
empty RUnit = Unit
empty (RSum ra rb) = L (empty ra)
empty (RProd ra rb) = empty ra :×: empty rb
empty (RType ep ra) = to ep (empty ra)
empty (RCon s ra) = empty ra

Note that some of these choices are somewhat arbitrary. We might have used minBound
for Int or R for sums.
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An interesting aspect of this function is that it has a generic value as an output instead
of an input. Up to now, we have only seen generic consumer functions or functions that
accept generic arguments. A producer function constructs a generic value.

Exercise 2. Another generic function that constructs values of a datatype is the func-
tion enum :: Rep a → [a ], which generates all values of a type. Many datatypes have
infinitely many values, so it is important that function enum enumerates values fairly.
Implement enum in LIGD. �

Flatten. We previously introduced container datatypes in Sections 2.3 and 3.4. A use-
ful function on a container datatype is a “flatten” function, which takes a value of the
datatype and returns a list containing all values that it contains. For example, on the
datatype Tree a, a flatten function would have type Tree a → [a ]. We explain how to
define this generic function in LIGD.

To implement flatten, we have to solve a number of problems. The first problem is
describing its type. An incorrect attempt would be the following:

flatten :: Rep f → f a→ [a ] -- WRONG!

where f abstracts over types of kind � → �. Since Rep expects arguments of kind �,
this gives a kind error. Replacing Rep f by Rep (f a) would solve the kinding prob-
lem, but introduce another: how do we split the representation of a container datatype
into a representation for f and a representation for a? Type application is implicit in
the type representation Rep (f a). We solve this problem by creating a new structure
representation type:

data Rep1 g a where
RInt1 :: Rep1 g Int
RChar1 :: Rep1 g Char
RUnit1 :: Rep1 g Unit
RSum1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :+: b)
RProd1 :: Rep1 g a→ Rep1 g b→ Rep1 g (a :×: b)
RType1 :: EP d r→ Rep1 g r→ Rep1 g d
RCon1 :: String→ Rep1 g a→ Rep1 g a
RVar1 :: g a→ Rep1 g a

This datatype is very similar to Rep, but there are two important differences. The first
is that Rep1 is now parametrised over two types: a generic function signature g of
kind � → � and a generic type a of kind �. The second change is the addition of the
RVar1 constructor. The combination of the signature, represented by a newtype, and
the constructor RVar1 will be used to define the functionality at occurrences of the type
argument in constructors.

Our initial challenge for defining flatten is to choose a signature (for g above). In
general, it should be the most general signature possible, and in our case, we note that
our function takes one generic value and produces a list of non-generic elements. Thus,
we know the following: it is a function with one argument, that argument is generic, and
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the return value is a polymorphic list. From this information, we decide on the following
newtype as our signature:

newtype Flatten b a = Flatten{selFlatten :: a→ [b ]}
It is important to notice that the order of the type parameters is significant. Flatten will
be used as a type of kind �→ �, so the last parameter (a) serves as the generic argument
type while the first parameter (b) is simply polymorphic.

Once we have our signature, we can define a type-indexed function (with a type
synonym to improve the readability and reduce the visual complexity of types).

type RFlatten b a = Rep1 (Flatten b) a

appFlatten :: RFlatten b a→ a→ [b ]
appFlatten RInt1 i = [ ]
appFlatten RChar1 c = [ ]
appFlatten RUnit1 Unit = [ ]
appFlatten (RSum1 ra rb) (L a) = appFlatten ra a
appFlatten (RSum1 ra rb) (R b) = appFlatten rb b
appFlatten (RProd1 ra rb) (a :×: b) = appFlatten ra a ++ appFlatten rb b
appFlatten (RType1 ep ra) x = appFlatten ra (from ep x)
appFlatten (RCon1 ra) x = appFlatten ra x
appFlatten (RVar1 f ) x = selFlatten f x

The function appFlatten is not the final result, but it encompasses all of the structural
induction on the representation. The primitive types and unit are not important to the
structure of the container, so we return empty lists for them. In the sum case, we sim-
ply recurse to the appropriate alternative. For products, we append the second list of
elements to the first list. In the RType case, we convert a Haskell datatype to its repre-
sentation before recursing. Perhaps the most interesting case is RVar1.

The RVar1 constructor tells us where to apply the function wrapped by our newtype
signature. Thus, we select the function with the record destructor selFlatten and apply
it to the value. Since we have not yet defined that signature function, our definition is
not yet complete. We can define the signature function and the final result in one go:

flatten :: (RFlatten a a→ RFlatten a (f a))→ f a→ [a ]
flatten rep = appFlatten (rep (RVar1 (Flatten (:[ ]))))

We have added a convenience to the type signature that is perhaps not obvious: it is
specialized to take an argument of f a rather than the more general, single-variable type
that would be inferred. This change allows us to look at the type and better predict the
meaning of the function.

There are a few points worth highlighting in the definition of flatten. First, the type
signature indicates that its first argument is a representation for a datatype of kind
� → �. This is evident from the functional type of the argument. Second, we see a
value-level parallel to a type-level operation: the rep argument, representative of a type
constructor, is applied to the RVar1 value, itself standing in for the argument of a type
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constructor. Lastly, our signature function is established by Flatten (:[ ]), where (:[ ])
injects an element into a singleton list. Notice the connection to appFlatten in which we
use selFlatten to apply the signature function in the RVar1 case.

Now, to see how flatten can be used, we create a representation for the List datatype
using Rep1. When comparing with the previous representation for Rep, the constructor
names and the type require trivial changes.

rList,1 :: Rep1 g a→ Rep1 g (List a)
rList,1 ra = RType1 (EP fromList toList)

(RSum1 (RCon1 "Nil" RUnit1)
(RCon1 "Cons" (RProd1 ra (rList,1 ra))))

We use this representation to produce a function specialized for lists:

flattenList :: List a→ [a ]
flattenList = flatten rList,1

Of course, this transformation is isomorphic and not extremely useful, but we can apply
the same approach to Tree and Forest for a more productive specialization.

Exercise 3. Many generic functions follow the same pattern of the generic flatten func-
tion. Examples include a function that sums all the integers in a value of a datatype, and
a function that takes the logical “or” of all boolean values in a container. We implement
this pattern with crush.

The function crush abstracts over functionality at occurrences of the type variable.
In the definition of flatten, this includes the base case [ ] and the binary case ++. The
relevant types of crush follow.

newtype Crush b a = Crush{gCrush :: a→ b}
crush :: Rep1 (Crush b) a→ (b→ b→ b)→ b→ a→ b

Define crush. (Attempt to solve it without looking ahead to Section 6 in which crush is
defined using the EMGM library.)

To test if your function implements the desired behavior, instantiate crush with the
addition operator, 0, and a value of a datatype containing integers to obtain a generic
sum function. �

Generalised Map. A well-known function is map :: (a → b) → [a ] → [b ] function.
It takes a higher-order function and a list as arguments, and applies the function to every
element in the list. We can also defined a generic map function that applied a function
to every element of some container datatype. The map function can be viewed as the
implementation of deriving Functor.

As with the generic flatten, the generic map function needs to know where the occur-
rences of the type argument of the datatype appear in a constructor. This means that we
again need to abstract over type constructors. If we use Rep1 for our representation, the
argument function will only return a value of a type that dependent on a or a constant
type. Recall that the constructor RVar1 has type g a → Rep1 g a, and thus the signa-
ture function g can only specify behavior for a single type variable. A true, generic map



Libraries for Generic Programming in Haskell 189

should be able to change each element type from a to a possibly completely different
type b; so, we need a signature function with two type variables.

Our generic map will use this new representation datatype.

data Rep2 g a b where
RInt2 :: Rep2 g Int Int
RChar2 :: Rep2 g Char Char
RUnit2 :: Rep2 g Unit Unit
RSum2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :+: c) (b :+: d)
RProd2 :: Rep2 g a b→ Rep2 g c d→ Rep2 g (a :×: c) (b :×: d)
RType2 :: EP a c→ EP b d→ Rep2 g c d→ Rep2 g a b
RCon2 :: String→ Rep2 g a b→ Rep2 g a b
RVar2 :: g a b→ Rep2 g a b

The significant difference with the representation type Rep1 is the addition of the type
variable b in Rep2 g a b and in the signature function g a b argument of RVar2. As we
would expect, a signature function now has the kind �→ � → �. One other minor but
necessary difference from Rep1 (and Rep) is the second EP argument to RType. Since
we have two generic type parameters, we need an isomorphism for each.

We begin defining the generic function map with the signature function type as we
did with flatten. Analyzing the problem we want to solve, we know that map requires
a generic input value and a generic output value. There are no polymorphic or known
types involved. So, our signature function is as follows:

newtype Map a b = Map{selMap :: a→ b}
Unlike the flatten example, the position of the parameters is not as important.

The type-indexed function appears as so:

type RMap a b = Rep2 Map a b

appMap :: RMap a b→ a→ b

appMap RInt2 i = i
appMap RChar2 c = c
appMap RUnit2 Unit = Unit
appMap (RSum2 ra rb) (L a) = L (appMap ra a)
appMap (RSum2 ra rb) (R b) = R (appMap rb b)
appMap (RProd2 ra rb) (a :×: b) = appMap ra a :×: appMap rb b
appMap (RType2 ep1 ep2 ra) x = (to ep2 . appMap ra . from ep1) x
appMap (RCon2 ra) x = appMap ra x
appMap (RVar2 f ) x = selMap f x

Its definition is no real surprise. Since we only apply a change to elements of the con-
tainer, we only use the signature function selMap f in the RVar2 case. In every other
case, we preserve the same structure on the right as on the left. It is also interesting to
note the RType2 case in which we translate from a datatype to its structure representa-
tion, apply the recursion, and translate the result back to the datatype.
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The final part of the definition is quite similar to that of flatten.

map :: (RMap a b→ RMap (f a) (f b))→ (a→ b)→ f a→ f b

map rep f = appMap (rep (RVar2 (Map f )))

A major point of difference here is that the signature function f is an argument.
The representation of lists using this new representation type changes in insignificant

ways: a second embedding-projection pair and naming updates.

rList,2 ra = RType2 (EP fromList toList)
(EP fromList toList)
(RSum2 (RCon2 "Nil" RUnit2)

(RCon2 "Cons" (RProd2 ra (rList,2 ra))))

Using rList,2, we can define map on lists as follows:

mapList :: (a→ b)→ List a→ List b

mapList = map rList,2

Since each of the last two generic functions introduced required a new structure repre-
sentation type, one might wonder if this happens for many generic functions. As far as
we have found, the useful extensions stop with three generic type parameters. We could
use the datatype Rep3 for all generic functions, but that would introduce many type
variables that are never used. We prefer to use the representation type most suitable to
the generic function at hand.

Exercise 4. Define the generalised version of function zipWith :: (a → b → c) →
[a ]→ [b ]→ [c ] in LIGD. You may need to adapt the structure representation type for
this purpose. �

5.6 Case Study: Exercise Assistants

In this section, we describe using the LIGD library to define a generic function for a
particular case study, an exercise assistant. An exercise assistant supports interactively
solving exercises in a certain domain. For example, at the Open University NL and
Utrecht University, we are developing exercise assistants for several domains: systems
of linear equations [Passier and Jeuring, 2006], disjunctive normal form (DNF) of a log-
ical expression [Lodder et al., 2006], and several kinds of exercises with linear algebra.
A screenshot of the assistant that supports calculating a DNF of a logical expression is
shown in Figure 1.

The exercise assistants for the different domains are very similar. They need op-
erations such as equality, rewriting, exercise generation, term traversal, selection, and
serialization. Each program can be viewed as an instance of a generic exercise assistant.
For each generic programming library we discuss in these lecture notes, we also present
a case study implementing functionality for an exercise assistant. In this subsection, we
show how to implement a generic function for determining the difference between two
terms.
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Fig. 1. The Exercise Assistant

We have used equality to introduce many concepts in these notes; however, we often
want to know whether or not two values differ, and by how much or where. For example,
in the exercise assistant a user can submit a step towards a solution of an exercise. We
want to compare the submitted expression against expressions obtained by applying
rewrite rules to the previous expression. If none match, we want to find a correctly
rewritten expression that is closest in some sense to the expression submitted by the
student.

The function similar determines a measure of equality between two values. Given
two values, the function counts the number of constructors and basic values that are
equal. The function traverses its arguments top-down: as soon as it encounters unequal
constructors, it does not traverse deeper into the children.

similar :: Rep a→ a→ a→ Int

similar RInt i j = if i j then 1 else 0
similar RChar c d = if c d then 1 else 0
similar RUnit = 1
similar (RSum ra rb) (L a) (L b) = similar ra a b
similar (RSum ra rb) (R a) (R b) = similar rb a b
similar (RSum ra rA ) = 0
similar (RProd ra rb) (a1 :×: b1) (a2 :×: b2) = similar ra a1 a2 + similar rb b1 b2
similar (RType ep ra) a b = similar ra (from ep a) (from ep b)
similar (RCon s ra) a b = 1 + similar ra a b

Given a definition of a generic function size that returns the size of a value by counting
all basic values and constructors, we can define the function diff by:

diff :: Rep a→ a→ a→ Int
diff rep x y = size rep x− similar rep x y
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The difference here is reported as the size of the first value minus the similarity of the
two. The function diff provides a rough estimate. A generic minimum edit distance
function [Lempsink et al., 2009] would provide a higher-precision difference.

In this section, we discussed an implementation of datatype-generic programming in
the Lightweight Implementation of Generics and Dynamics library. In the next section,
we discuss a library that is similar in representation to LIGD but uses type classes
instead of GADTs.

6 Extensible and Modular Generics for the Masses

The library “Generics for the Masses” was first introduced by Hinze [2004], and a
variant, “Extensible and Modular Generics for the Masses,” was later presented by
Oliveira et al. [2006]. In this section, we describe latter, EMGM, with a slight twist
to ease the extensibility requirements (details in Section 6.6).

Our approach follows much like that of Section 5. We again use equality to introduce
generic functions (Section 6.1). We also explain the general mechanics (Section 6.2),
the component necessary for extending the universe (Section 6.3), and the support
for overloading (Section 6.4). Where EMGM differs from LIGD is the capability for
generic functions to be extended with datatype-specific functionality while preserving
the modularity of the function definition. We first describe the published approach to
solving this problem (Section 6.5) and then introduce our solution to reducing the bur-
den of extensibility (Section 6.6). Next, we define several different generic functions
using EMGM (Section 6.7). As with LIGD, these require changes to the represen-
tation. Finally, we implement a value generator for the exercise assistant case study
(Section 6.8).

6.1 An Example Function

Defining a generic function in the EMGM library involves several steps. First, we
declare the type signature of a function in a newtype declaration.

newtype Eq a = Eq{selEq :: a→ a→ Bool}
The newtype Eq serves a similar purpose to the signature function of LIGD first
mentioned when describing the function flatten in Section 5.5. Unlike LIGD, however,
every generic function in EMGM requires its own newtype.

Next, we define the cases of our generic function.

selEqint i j = i j

selEqchar c d = c d
selEq1 Unit Unit = True
selEq+ ra rb (L a1) (L a2) = selEq ra a1 a2
selEq+ ra rb (R b1) (R b2) = selEq rb b1 b2
selEq+ = False

selEq× ra rb (a1 :×: b1) (a2 :×: b2) = selEq ra a1 a2 ∧ selEq rb b1 b2
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We can read this in the same fashion as a type-indexed function in LIGD. Indeed, there
is a high degree of similarity. However, instead of a single function that uses pattern
matching on a type representation, we have many functions, each corresponding to a
primitive or structural type. Another major difference with LIGD is that the type rep-
resentation parameters (e.g. for RSum, RProd, etc.) are explicit and not embedded in
the Rep datatype. Specifically, each function takes the appropriate number of repre-
sentations according to the arity of the structural element. For example, selEq1 has no
representation arguments, and selEq+ and selEq× each have two.

These functions are only part of the story, of course. Notice that selEq+ and selEq×
each call the function selEq. We need to tie the recursive knot, so that selEq will select
the appropriate case. We do this by creating an instance declaration of a type class
Generic for Eq:

instance Generic Eq where
rint = Eq selEqint
rchar = Eq selEqchar
runit = Eq selEq1

rsum ra rb = Eq (selEq+ ra rb)
rprod ra rb = Eq (selEq× ra rb)

The type class has member functions corresponding to primitive and structure types.
Each method defines the instance of the type-indexed function for the associated type.
The above collection of functions are now used in values of Eq. The EMGM approach
uses method overriding instead of the pattern matching used by LIGD, but it still pro-
vides an effective case analysis on types. Another difference between the two libraries
is that LIGD uses explicit recursion while EMGM’s recursion is implicitly implemented
by the instance in a fold-like manner.

We now have all of the necessary parts to use the type-indexed function selEq.4

selEq (rprod rchar rint) (’Q’ :×: 42) (’Q’ :×: 42) � True

On the other hand, we should not need to provide an explicit representation every time.
Instead, we introduce a convenient wrapper that determines which type representation
we need.

eq :: (Rep a)⇒ a→ a→ Bool
eq = selEq rep

The type class Rep is an interface (Section 2.4) to all known type representations, and its
method rep statically resolves to a value of the appropriate representation. This mech-
anism allows us to write a simpler call: eq (’Q’ :×: 42) (’Q’ :×: 42). Note that we
might have defined such a class for LIGD (as was done by Cheney and Hinze [2002]);
however, that would have only been a convenience. In EMGM, it becomes a necessity
for extensibility (Section 6.5).

4 We use the notation a � b to mean that, in GHCi, expression a evaluates to b.
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6.2 Run-Time Type Representation

In contrast with LIGD’s GADT, EMGM makes extensive use of type classes for its run-
time type representation. The primary classes are Generic and Rep, though others may
be used to extend the basic concepts of EMGM as we will see later (Section 6.7).

The type class Generic serves as the interface for a generic function.

class Generic g where
rint :: g Int
rchar :: g Char
runit :: g Unit
rsum :: g a→ g b→ g (a :+: b)
rprod :: g a→ g b→ g (a :×: b)

infixr 5 ‘rsum‘
infixr 6 ‘rprod‘

The class is parametrised by the type constructor g that serves as the type-indexed
function’s signature function.

Each method of the class represents a case of the type-indexed function. The function
supports the same universe of types as LIGD (e.g. Unit, :+:, :×:, and primitive types).
Also like LIGD, the structural induction is implemented through recursive calls, but un-
like LIGD, these are polymorphically recursive (see Section 2.4). Thus, in our previous
example, each call to selEq may have a different type.

The type-indexed function as we have defined it to this point is a destructor for the
type g. As such, it requires an value of g, the type representation. In order to alleviate
this requirement, we use another type class:

class Rep a where
rep :: (Generic g)⇒ g a

This allows us to replace any value of the type g a with rep. This simple but powerful
concept uses the type system to dispatch the necessary representation. Representation
instances are built inductively using the methods of Generic:

instance Rep Int where
rep = rint

instance Rep Char where
rep = rchar

instance Rep Unit where
rep = runit

instance (Rep a, Rep b)⇒ Rep (a :+: b) where
rep = rsum rep rep

instance (Rep a, Rep b)⇒ Rep (a :×: b) where
rep = rprod rep rep
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As simple as these instances of Rep are, they handle an important duty. In the function
eq, we use rep to instantiate the structure of the arguments. For example, it instantiates
rprod rchar rint given the argument ’Q’ :×: (42 :: Int). Now, we may apply eq with the
same ease of use as with any ad-hoc polymorphic function, even though it is actually
datatype-generic.

6.3 Going Generic: Universe Extension

Much like in LIGD, we need to extend our universe to include any new datatypes that we
create. We extend our type-indexed functions with a case to support arbitrary datatypes.

class Generic g where
. . .
rtype :: EP b a→ g a→ g b

The rtype function reuses the embedding-projection pair datatype EP mentioned earlier
to witness the isomorphism between the structure representation and the datatype. Note
the similarity with the RType constructor from LIGD (Section 5.3).

To demonstrate the use of rtype, we will once again show how the List datatype
may be represented in a value. As mentioned before, we use the same structure types
as LIGD, so we can make use of the same pair of functions, fromList and toList, in the
embedding projection for lists. Using this pair and an encoding of the list structure at
the value level, we define a representation of lists:

rList :: (Generic g)⇒ g a→ g (List a)
rList ra = rtype (EP fromList toList) (runit ‘rsum‘ ra ‘rprod‘ rList ra)

It is now straightforward to apply a generic function to a list. To make it convenient,
we create a new instance of Rep for List a with the constraint that the contained type a
must also be representable:

instance (Rep a)⇒ Rep (List a) where
rep = rList rep

At last, we can transform our type-indexed equality function into a true generic func-
tion. For this, we need to add another case for arbitrary datatypes.

selEqtype ep ra a1 a2 = selEq ra (from ep a1) (from ep a2)

instance Generic Eq where
. . .
rtype ep ra = Eq (selEqtype ep ra)

The function selEqtype accepts any datatype for which an embedding-projection pair
has been defined. It is very similar to the RType case in the LIGD version of equality.
The Generic instance definition for rtype completes the requirements necessary for eq
to be a generic function.
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Exercise 5. Now that you have seen how to define rList, you should be able to define the
representation for most other datatypes. Give representations and embedding-projection
pairs for LogicL and LogicF from Section 3.4. You may need to do the same for other
datatypes in the process. Test your results using eq as defined above. �

6.4 Support for Overloading

In this section, we demonstrate how the EMGM library supports constructor names and
ad-hoc cases. As with LIGD in Section 5.4, we illustrate this support using a generic
show function and lists and strings.

For accessing constructor names in the definition of a generic function, we add an-
other method to our generic function interface.

class Generic g where
. . .
rcon :: String→ g a→ g a

We use rcon to label other structure components with a constructor name5. As an ex-
ample of using this method, we modify the list type representation with constructor
names:

rList :: (Generic g)⇒ g a→ g (List a)
rList ra = rtype (EP fromList toList)

(rcon "Nil" runit ‘rsum‘ rcon "Cons" (ra ‘rprod‘ rList ra))

Using the capability to display constructor names, we can write a simplified generic
show function:

newtype Show a = Show{selShow :: a→ String}

selShowint i = show i

selShowchar c = show c
selShow1 Unit = ""

selShow+ ra rb (L a) = selShow ra a
selShow+ ra rb (R b) = selShow rb b
selShow× ra rb (a :×: b) = selShow ra a ++ " "++ selShow rb b
selShowtype ep ra a = selShow ra (from ep a)

selShowcon s ra a = "("++ s ++ " "++ selShow ra a ++ ")"

instance Generic Show where
rint = Show selShowint

5 The released EMGM library uses ConDescr instead of String. ConDescr contains a more
comprehensive description of a constructor (fixity, arity, etc.). For simplicity’s sake, we only
use the constructor name in our presentation.
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rchar = Show selShowchar
runit = Show selShow1

rsum ra rb = Show (selShow+ ra rb)
rprod ra rb = Show (selShow× ra rb)
rtype ep ra = Show (selShowtype ep ra)
rcon s ra = Show (selShowcon s ra)

show :: (Rep a)⇒ a→ String
show = selShow rep

Applying this function to a list of integers gives us the expected result:

show (Cons 5 (Cons 3 Nil)) � "(Cons 5 (Cons 3 (Nil )))"

As mentioned in Section 5.4, we would prefer to see this list as it natively appears in
Haskell: "[5,3]". To this end, just as we added a RList constructor to the Rep GADT,
it is possible to add a method rlist to Generic.

class Generic g where
. . .
rlist :: g a→ g (List a)

It is then straightforward to define a new case for the generic show function, reusing the
showList function from Section 5.4.

instance Generic Show where
. . .

> rlist ra = Show (showList (selShow ra) True)

Our last step is to make these types representable. We replace the previous instance of
Rep for List a with one using the rlist method, and we add a new instance for String.

instance (Rep a)⇒ Rep (List a) where
rep = rlist rep

Now, when applying the example application of show above, we receive the more con-
cise output.

In order to extend the generic function representation to support ad-hoc list and string
cases, we modified the Generic type class. This approach fails when the module con-
taining Generic is distributed as a third-party library. Unlike LIGD, there are solutions
for preserving modularity while allowing extensibility.

6.5 Making Generic Functions Extensible

Since modifying the type class Generic should be considered off-limits, we might con-
sider declaring a hierarchy of classes for extensibility. Generic would then be the base
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class for all generic functions. A user of the library would introduce a subclass for an
ad-hoc case on a datatype. To explore this idea, let us revisit the example of defining a
special case for show on lists.

The subclass for list appears as follows:

class (Generic g)⇒ GenericList g where
rlist :: g a→ g (List a)
rlist = rList

This declaration introduces the class GenericList encoding a list representation. The
default value of rlist is the same value that we determined previously, but it can be
overridden in an instance declaration. For the ad-hoc case of the generic show function,
we would use an instance with the same implementation as before:

instance GenericList Show where
rlist ra = Show (showList (selShow ra) True)

We have regained some ground on our previous implementation of an ad-hoc case, yet
we have lost some as well. We can apply our generic function to a type representation
and a value (e.g. (selShow (list rint) (Cons 3 Nil))), and it will evaluate as expected.
However, we can no longer use the same means of dispatching the appropriate repre-
sentation with ad-hoc cases. What happens if we attempt to write the following instance
of Rep?

instance (Rep a)⇒ Rep (List a) where
rep = rlist rep

GHC returns with this error:

Could not deduce (GenericList g)
from the context (Rep (List a), Rep a, Generic g)
arising from a use of ‘rlist’ at ...

Possible fix:
add (GenericList g) to the context of
the type signature for ‘rep’ ...

We certainly do not want to follow GHC’s advise. Recall that the method rep of class
Rep has the type (Generic g, Rep a) ⇒ g a. By adding GenericList g to its context,
we would force all generic functions to support both Generic and GenericList, thereby
ruling out any modularity. In order to use Rep as it is currently defined, we must use a
type g that is an instance of Generic; instances of any subclasses are not valid.

Let us instead abstract over the function signature type g. We subsequently redefine
Rep as a type class with two parameters.

class Rep g a where
rep :: g a

This migrates the parametrisation of the type constructor to the class level and lifts the
restriction of the Generic context. We now re-define the representative instances.
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instance (Generic g)⇒ Rep g Int where
rep = rint

instance (Generic g)⇒ Rep g Char where
rep = rchar

instance (Generic g)⇒ Rep g Unit where
rep = runit

instance (Generic g, Rep g a, Rep g b)⇒ Rep g (a :+: b) where
rep = rsum rep rep

instance (Generic g, Rep g a, Rep g b)⇒ Rep g (a :×: b) where
rep = rprod rep rep

instance (GenericList g, Rep g a)⇒ Rep g (List a) where
rep = rlist rep

The organization here is very regular. Every instance handled by a method of Generic
is constrained by Generic in its context. For the ad-hoc list instance, we use GenericList
instead.

Now, we rewrite our generic show function to use the new dispatcher by specialising
the type constructor argument g to Show.

show :: (Rep Show a)⇒ a→ String
show = selShow rep

This approach of using a type-specific class (e.g. GenericList) for extensibility as
described initially by Oliveira et al. [2006] and demonstrated here by us puts an ex-
tra burden on the user. In the next subsection, we explain the problem and how we
rectify it.

6.6 Reducing the Burden of Extensibility

Without the change for extensibility (i.e. before Section 6.4), a function such as show in
EMGM would automatically work with any type that was an instance of Rep. When we
add Section 6.5, then every generic function must have an instance of every datatype
that it will support. In other words, even if we did not want to define an ad-hoc case
for Show using GenericList as we did earlier, we must provide at least the following
(empty) instance to use show on lists.

instance GenericList Show where

This uses the default method for rlist and overrides nothing.
As developers of a library, we want to strike a balance between ease of use and flex-

ibility. Since we want to allow for extensibility in EMGM, we cannot provide these
instances for each generic function provided by the library. This forces the library
user to write one for every unique pair of datatype and generic function that is used,
whether or not an ad-hoc case is desired. We can fortunately reduce this burden using an
extension to the Haskell language.
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Overlapping instances allow more than one instance declaration to match when re-
solving the class context of a function, provided that there is a most specific one. Using
overlapping instances, we no longer need a type-specific class such as GenericList be-
cause constraint resolution will choose the list representation as long as List a is the
most specific instance.

To continue with our example of specializing Show for lists, we provide the changes
needed with respect to Section 6.5. The List instance for Rep is the same except for
replacing GenericList with Generic.

instance (Generic g, Rep g a)⇒ Rep g (List a) where
rep = rlist rep

At this point, with overlapping instances enabled, no further work is necessary for lists
to be supported by any generic function that uses the Generic class. However, since we
do want an ad-hoc case, we add an instance for Show:

instance (Rep Show a)⇒ Rep Show (List a) where
rep = Show (showList (selShow rep) True)

Notice that the newtype Show is substituted for the variable g in the first argument of
Rep.

Exercise 6. The standard compare function returns the ordering (less than, equal to, or
greater than) between two instances of some type a.

data Ordering = LT | EQ | GT
compare :: (Ord a)⇒ a→ a→ Ordering

This function can be implemented by hand, but more often, it is generated by the com-
piler using deriving Ord. The latter uses the syntactic ordering of constructors to
determine the relationship. For example, the datatype Ordering derives Ord and its
constructors have the relationship LT < EQ < GT.

Implement an extensible, generic compare that behaves like deriving Ord. It should
have a type signature similar to the above, but with a different class context. �

6.7 Generic Functions in EMGM

In this section, we discuss the implementation of various generic functions. Some re-
quire alternative strategies from the approach described so far.

Empty. As we did with LIGD in Section 5.5, we write the generic producer function
empty in EMGM as follows:

newtype Empty a = Empty{selEmpty :: a}

instance Generic Empty where
rint = Empty 0
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rchar = Empty ’\NUL’
runit = Empty Unit
rsum ra rb = Empty (L (selEmpty ra))
rprod ra rb = Empty (selEmpty ra :×: selEmpty rb)
rtype ep ra = Empty (to ep (selEmpty ra))
rcon s ra = Empty (selEmpty ra)

empty :: (Rep Empty a)⇒ a

empty = selEmpty rep

There are a two noteworthy differences from previous examples. First, since it is a
producer function, empty outputs a generic value. Unlike empty in LIGD, however,
the EMGM version takes no arguments at all. In order to use it, we need to specify a
concrete type. In the case where this is not inferred, we can give a type annotation.

empty :: Int :+: Char � L 0

The second difference lies in the rtype definition, where we use to ep instead of from ep.
This is also characteristic of producer functions.

Crush and Flatten. Crush is a fold-like operation over a container datatype [Meertens,
1996]. It is a very flexible function, and many other useful functions can be imple-
mented using crush. As mentioned in Exercise 3, it can be used to implement flatten,
which we will also demonstrate.

Our goal is a function with a signature similar to the following for datatypes of kind
�→ � (see discussion for flatten in Section 5.5).

crushr :: (a→ b→ b)→ b→ f a→ b

The function crushr takes three arguments: a “combining” operator that joins a-values
with b-values to create new b-values, a “zero” value, and a container f of a-values.
crushr (sometimes called reduce) is a generalization of the standard Haskell foldr func-
tion. In foldr, f is specialized to [ ].

We split the implementation of crushr into components, and we begin with the type
signature for the combining function.

newtype Crushr b a = Crushr{selCrushr :: a→ b→ b}
This function extracts the container’s element and combines it with a partial result to
produce a final result. The implementation follows6:

crushrint e = e
crushrchar e = e
crushr1 e = e

6 For brevity, we elide most of the Generic instance declaration. It is the same as we have seen
before.
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crushr+ ra rb (L a) e = selCrushr ra a e
crushr+ ra rb (R b) e = selCrushr rb b e
crushr× ra rb (a :×: b) e = selCrushr ra a (selCrushr rb b e)
crushrtype ep ra a e = selCrushr ra (from ep a) e

crushrcon s ra a e = selCrushr ra a e

instance Generic (Crushr b) where
rint = Crushr crushrint
. . .

Note that selCrushr is only applied to the parametrised structural type cases: crushr+ ,
crushr×, crushrtype, and crushrcon; it is not applied to the primitive types. Crush only
combines the elements of a polymorphic datatype and does not act on non-parametrised
types.

We have successfully made it this far, but now we run into a problem. The type for
rep is Rep g a ⇒ g a, and type a is the representation type and has kind �. We need
a representation for a type of kind � → �. To expand rep to support type constructors,
we define similar class in which the method has a parameter.

class FRep g f where
frep :: g a→ g (f a)

The class FRep (representation for functionally kinded types) takes the same first type
argument as Rep, but the second is the type constructor f. Notice that the type of frep
matches the kind of f. This is exactly what we need for types such as Tree or List. The
FRep instance for List is not too unlike the one for Rep:

instance (Generic g)⇒ FRep g List where
frep = rList

Now we can define crushr; however, it is a bit of a puzzle to put the pieces together.
Let’s review what we have to work with.

Crushr :: (a→ b→ b)→ Crushr b a

frep :: (FRep g f)⇒ g a→ g (f a)
selCrushr :: Crushr b a→ a→ b→ b

Applying some analysis of the types (left as an exercise for the reader), we compose
these functions to get our result.

selCrushr . frep . Crushr :: (FRep (Crushr b) f)⇒ (a→ b→ b)→ f a→ b→ b

Finally, we rearrange the arguments to get a final definition with a signature similar to
foldr.

crushr :: (FRep (Crushr b) f)⇒ (a→ b→ b)→ b→ f a→ b
crushr f z x = selCrushr (frep (Crushr f )) x z
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To demonstrate the use of crushr, we define the flattenr function as a specialization.
Recall that flattening involves translating all elements of a structure into a list. The
definition of flattenr requires only the combining operator, (:), for inserting an element
into a list and the zero value, [ ], for starting a new list.

flattenr :: (FRep (Crushr [a ]) f)⇒ f a→ [a ]
flattenr = crushr (:) [ ]

Exercise 7. How is the behavior of the EMGM function crushr different from that of
the LIGD function crush? Why might the crushr end with an r? What difference would
you expect from a function called crushl? �

Exercise 8. Define two functions using crushr:

1. showElements takes a container with showable elements and returns a string with
the elements printed in a comma-delimited fashion.

2. sumElements takes a container with numeric elements and returns the numeric sum
of all elements. �

Generalised Map. As described in Section 5.5, a generic map function gives us the
ability to modify the elements of any container type. We aim for a function with this
type:

map :: (a→ b)→ f a→ f b

Using the same analysis performed to define the signature function for map in LIGD,
we arrive at the same type.

newtype Map a b = Map{selMap :: a→ b}
This means we need to abstract over both type arguments in Map. We have not yet seen
how that is done in EMGM, but the idea is similar to the change in LIGD’s representa-
tion.

In order to support abstraction over two types, we need a new class for defining
generic functions. One option is to add a type argument to Generic and reuse that type
class for all previous implementations, ignoring the extra variable. Instead, for sim-
plicity, we choose to create Generic2 to distinguish generic functions with two type
arguments.

class Generic2 g where
rint2 :: g Int Int
rchar2 :: g Char Char
runit2 :: g Unit Unit
rsum2 :: g a1 a2 → g b1 b2 → g (a1 :+: b1) (a2 :+: b2)
rprod2 :: g a1 a2 → g b1 b2 → g (a1 :×: b1) (a2 :×: b2)
rtype2 :: EP a2 a1 → EP b2 b1 → g a1 b1 → g a2 b2
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The major difference from Generic is that the signature function type g now has kind
� → � → �. In the case of the primitive types and Unit, this means simply repeating
the type twice. In the case of (:+:) and (:×:), we need to pass two types around instead
of one. The method rtype2, like the constructor RType2 now accepts two embedding-
projection pairs.

The implementation of the generic function follows:

mapint i = i
mapchar c = c

map1 Unit = Unit
map+ ra rb (L a) = L (selMap ra a)
map+ ra rb (R b) = R (selMap rb b)
map× ra rb (a :×: b) = selMap ra a :×: selMap rb b
maptype ep1 ep2 ra x = (to ep2 . selMap ra . from ep1) x

instance Generic2 Map where
rint2 = Map mapint
. . .
rtype2 ep1 ep2 ra = Map (maptype ep1 ep2 ra)

The explanation for the implementation follows exactly as the one given for LIGD’s
appMap except for the RVar2 case, which EMGM does not have.

We write the representation for list as:

rList,2 :: (Generic2 g)⇒ g a b→ g (List a) (List b)
rList,2 ra = rtype2 (EP fromList toList) (EP fromList toList)

(runit2 ‘rsum2‘ ra ‘rprod2‘ rList,2 ra)

We can immediately use the list representation to implement the standard map as
mapList:

mapList :: (a→ b)→ List a→ List b
mapList = selMap . rList,2 . Map

Of course, our goal is to generalise this, but we need an appropriate dispatcher class.
FRep will not work because it abstracts over only one type variable. We need to extend
it in the same way we extended Generic to Generic2:

class FRep2 g f where
frep2 :: g a b→ g (f a) (f b)

instance (Generic2 g)⇒ FRep2 g List where
frep2 = rList,2

The class FRep2 uses a signature function type g with two argument types. Note, how-
ever, that we still expect functionally kinded datatypes: f has kind �→ �.
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Finally, we provide our definition of map.

map :: (FRep2 Map f)⇒ (a→ b)→ f a→ f b
map = selMap . frep2 . Map

This definition follows as the expected generalisation of mapList.

Exercise 9. Are there other useful generic functions that make use of Generic2 and/or
FRep2? Can you define them? �

Exercise 10. Define a generalisation of the standard function zipWith in EMGM. The
result should have a type signature similar to this:

zipWith :: (a→ b→ c)→ f a→ f b→ f c

What extensions to the library (as defined) are needed? �

6.8 Case Study: Generating Values

The exercise assistant offers the possibility to generate a new exercise for a student.
This implies that we need a set of exercises for every domain: systems of linear equa-
tions, logical expressions, etc. We can create this set either by hand for every domain
or generically for an arbitrary domain. The former would likely involve a lot of work,
much of which would be duplicated for each domain. For the latter, we need to generi-
cally generate exercises. This leads us to defining a generic value generator.

At the simplest, we seek a generic function with this type signature:

gen :: Int→ a

gen takes a (possibly randomly generated) integer and returns a value somehow rep-
resentative of that number. Suppose that for small Int arguments (e.g. greater than 0
but single-digit), gen produces relatively simple values (e.g. with few sums). Then, as
the number increases, the output becomes more and more complex. This would lead
to an output like QuickCheck [Claessen and Hughes, 2000] typically uses for testing.
It would also lead to a set of exercises that progressively get more difficult as they are
solved.

One approach to doing this is to enumerate the values of a datatype. We generate a
list of all of the values using the following template of a generic function:

newtype Enum a = Enum{selEnum :: [a ]}
instance Generic Enum where

rint = Enum enumint
rchar = Enum enumchar
runit = Enum enum1

rsum ra rb = Enum (enum+ ra rb)
rprod ra rb = Enum (enum× ra rb)
rtype ep ra = Enum (enumtype ep ra)
rcon s ra = Enum (enumcon s ra)
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Now, let us fill in each case of the function. Int values can be positive or negative
and cover the range from minBound to maxBound, the exact values of these being
dependent on the implementation. A simple option might be:

enumint = [minBound . . maxBound]

However, that would lead to a (very long) list of negative numbers followed by another
(very long) list of negative numbers. This is an awfully unbalanced sequence while we
would prefer to start with the most “basic” value (equivalent to empty) and progres-
sively get larger. As a result, we alternate positive and negative numbers.

enumint = [0 . . maxBound] ||| [−1,−2 . . minBound ]

By reversing the negative enumeration, we now begin with 0 and grow larger (in the
absolute sense). The interleave operator (|||) is defined as follows:

(|||) :: [a ]→ [a ]→ [a ]
[ ] ||| ys = ys
(x : xs) ||| ys = x : ys ||| xs

This function is similar to ++ with the exception of the recursive case, in which xs and
ys are swapped. This allows us to interleave the elements of the two lists, thus balancing
the positive and negative sides of the Int enumeration. Note that (|||) also works if the
lists are infinite.

For Char and Unit, the implementations are straightforward.

enumchar = [minBound . . maxBound]
enum1 = [Unit ]

For enumchar, we enumerate from the first character ’\NUL’ to the last, and for
enum1 , we return a singleton list of the only Unit value.

In sums, we have a problem analogous to that of Int. We want to generate L-values
and R-values, but we want to choose fairly from each side.

enum+ ra rb = [L x | x← selEnum ra ] ||| [R y | y← selEnum rb ]

By interleaving these lists, we ensure that there is no preference to either alternative.
We use the Cartesian product for enumerating the pairs of two (possibly infinite)

lists.

enum× ra rb = selEnum ra >< selEnum rb

The definition of >< is left as Exercise 11 for the reader.
The remaining cases for Enum are enumtype and enumcon. The former requires a

map to convert a list of generic representations to a list of values. The latter is the same
as for Empty (Section 6.7), because constructor information is not used here.
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enumtype ep ra = map (to ep) (selEnum ra)

enumcon s ra = selEnum ra

The final step for a generic enumeration function is to apply it to a representation.

enum :: (Rep Enum a)⇒ [a ]
enum = selEnum rep

To get to a generic generator, we simply index into the list.

gen :: (Rep Enum a)⇒ Int→ a
gen = (!!) enum

The performance of this function is not be optimal; however, we could fuse the indexing
operator (!!) into the definition of enum for a more efficient (and more complicated)
function.

Exercise 11. Define a function that takes the diagonalization of a list of lists.

diag :: [ [a ] ]→ [a ]

diag returns a list of all of elements in the inner lists. It will always return at least some
elements from every inner list, even if that list is infinite.

We can then use diag to define the Cartesian product.

(><) :: [a ]→ [b ]→ [a :×: b ]
xs >< ys = diag [ [x :×: y | y← ys ] | x← xs]

�

Exercise 12. Design a more efficient generic generator function. �

We have provided an introduction to the Extensible and Modular Generics for the
Masses library in this section. It relies on similar concepts to LIGD, yet it allows for
better extensibility and modularity through the use of type classes. The next section in-
troduces a well-known library using a representation that is completely different from
both LIGD and EMGM.

7 Scrap Your Boilerplate

In this section, we describe the Scrap Your Boilerplate (SYB) approach to generic pro-
gramming [Lämmel and Peyton Jones, 2003, 2004]. The original concept behind SYB
is that in contrast to the two approaches discussed previously, the structure of datatypes
is not directly exposed to the programmer. Generic functions are built with “primitive”
generic combinators, and the combinators in turn can be generated (in GHC) using
Haskell’s deriving mechanism for type classes. We also mention a variation of SYB
in which a structure representation is given and used to define functions.
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7.1 An Example Function

Recall the Expr datatype from Section 3), and suppose we want to implement a function
that increases the value of each literal by one. Here is a simple but incorrect solution:

inc :: Expr Int→ Expr Int
inc (Lit x) = Lit (x + 1)

This solution is incorrect because we also have to write the “boilerplate” code for
traversing the entire expression tree, which just leaves the structure intact and recurses
into the arguments. Using SYB, we do not have to do that anymore: we signal that the
other cases are uninteresting by saying:

inc x = x

Now we have the complete definition of function inc: increment the literals and leave
the rest untouched. To ensure that this function is applied everywhere in the expression
we write:

increment :: Data a⇒ a→ a
increment = everywhere (mkT inc)

This is all we need: the increment function increases the value of each literal by one in
any Expr. It even works for LinearExprs, or LinearSystems, with no added cost.

We now proceed to explore the internals of SYB to better understand the potential
of this approach and the mechanisms involved behind a simple generic function such as
increment.

7.2 Run-Time Type Representation

Contrary to the approaches to generic programming discussed earlier, SYB does not
provide the structure of datatypes to the programmer, but instead offers basic combi-
nators for writing generic programs. At the basis of these combinators is the method
typeOf of the type class Typeable. Instances of this class can be automatically derived
by the GHC compiler, and implement a unique representation of a type, enabling run-
time type comparison and type-safe casting.

class Typeable a where
typeOf :: a→ TypeRep

An instance of Typeable only provides a TypeRep (type representation) of itself. The
automatically derived instances of this class by GHC are guaranteed to provide a unique
representation for each type, which is a necessary condition for the type-safe cast, as
we will see later. So, providing an instance is as easy as adding deriving Typeable at
the end of a datatype declaration.

data MyDatatype a = MyConstructor a deriving Typeable
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We will not discuss the internal structure of TypeRep, since instances should not be
defined manually. However, the built-in derivation of Typeable makes SYB somewhat
less portable than the previous two libraries we have seen, and makes it impossible to
adapt the type representation.

The Typeable class is the “back-end” of SYB. The Data class can be considered the
“front-end”. It is built on top of the Typeable class, and adds generic folding, unfolding
and reflection capabilities7.

class Typeable d⇒ Data d where
gfoldl :: (∀a b . Data a⇒ c (a→ b)→ a→ c b)

→ (∀g . g→ c g)
→ d
→ c d

gunfold :: (∀b r . Data b⇒ c (b→ r)→ c r)
→ (∀r . r→ c r)
→ Constr
→ c d

toConstr :: d→ Constr

dataTypeOf :: d→ DataType

The combinator gfoldl is named after the function foldl on lists, as it can be considered
a “left-associative fold operation for constructor applications,” with gunfold being the
dualizing unfold. The types of these combinators may be a bit intimidating, and they
are better understood by looking at specific instances. We will give such instances in
the next subsection, since giving an instance of Data for a datatype is the way generic
functions become available on the datatype.

7.3 Going Generic: Universe Extension

To use the SYB combinators on a particular datatype we have to supply the instances
of the datatype for the Typeable and the Data class. A programmer should not define
instances of Typeable, but instead rely on the automatically derived instances by the
compiler. For Data, GHC can also automatically derive instances for a datatype, but
we present an instance here to illustrate how SYB works. For example, the instance of
Data on the List datatype is as follows.

instance (Typeable a, Data a)⇒ Data (List a) where
gfoldl k z Nil = z Nil
gfoldl k z (Cons h t) = z Cons ‘k‘ h ‘k‘ t
gunfold k z l = case constrIndex l of

1→ z Nil
2→ k (k (z Cons))

7 The Data class has many more methods, but they all have default definitions based on these
four basic combinators. They are provided as instance methods so that a programmer can
define more efficient versions, specialized to the datatype in question.
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Any instance of the Data class follows the regular pattern of the above instance: the
first argument to gfoldl (k) can be seen as an application combinator, and the second
argument (z) as the base case generator. Function gfoldl differs from the regular foldl in
two ways: it is not recursive, and the base case takes a constructor as argument, instead
of a base case for just the Nil. When we apply gfoldl to function application and the
identity function, it becomes the identity function itself.

gfoldl ($) id x = x

We further illustrate the gfoldl function with another example.

gsize :: Data a⇒ a→ Int

gsize = unBox . gfoldl k (λ → IntBox 1) where
k (IntBox h) t = IntBox (h + gsize t)

newtype IntBox x = IntBox{unBox :: Int}
Function gsize returns the number of constructors that appear in a value of any datatype
that is an instance of Data. For example, if it is applied to a list containing pairs, it will
count both the constructors of the datatype List, and of the datatype for pairs. Given
the general type of gfoldl, we have to use a container type for the result type Int and
perform additional boxing and unboxing. The type parameter x of IntBox is a phantom
type: it is not used as a value, but is necessary for type correctness.

Function gunfold acts as the dual operation of the gfoldl: gfoldl is a generic consumer,
which consumes a datatype value generically to produce some result, and gunfold is a
generic producer, which consumes a datatype value to produce a datatype value gener-
ically. Its definition relies on constrIndex, which returns the index of the constructor
in the datatype of the argument. It is technically not an unfold, but instead a fold on a
different view [Hinze and Löh, 2006].

The two other methods of class Data which we have not yet mentioned are toConstr
and dataTypeOf . These functions return, as their names suggest, constructor and
datatype representations of the term they are applied to. We continue our example of
the Data instance for the List datatype.8

toConstr Nil = con1
toConstr (Cons ) = con2

dataTypeOf = ty
dataCast1 f = gcast1 f

con1 = mkConstr ty "Empty_List" [ ] Prefix
con2 = mkConstr ty "Cons_List" [ ] Prefix
ty = mkDataType "ModuleNameHere" [con1, con2 ]

The functions mkConstr and mkDataType are provided by the SYB library as means
for building Constr and DataType, respectively. mkConstr build a constructor repre-
sentation given the constructor’s datatype representation, name, list of field labels and

8 Instead of "ModuleNameHere" one should supply the appropriate module name, which is
used for unambiguous identification of a datatype.
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fixity. mkDataType builds a datatype representation given the datatype’s name and list
of constructor representations. These two methods together form the basis of SYB’s
type reflection mechanism, allowing the user to inspect and construct types at runtime.
Finally, since the List datatype is not of kind �, we have to provide an implementation
for the dataCast1 method in terms of gcast1.9

SYB supports all datatypes for which we can give a Data and Typeable instance. This
includes all datatypes of Section 3 except GADTs and existentially quantified types, for
which we cannot define gunfold.

Exercise 13. Write a suitable instance of the Data class for the Expr datatype from
Section 3. �

The basic combinators of SYB are mainly used to define other useful combinators. It
is mainly these derived combinators that are used by a generic programmer. Functions
like gunfoldl appear very infrequently in generic programs. In the next subsection we
will show many of the derived combinators in SYB.

7.4 Generic Functions in SYB

We now proceed to show a few generic functions in the SYB approach. In SYB, as in
many other approaches, it is often useful to first identify the type of the generic function,
before selecting the most appropriate combinators to implement it.

Types of SYB Combinators. Transformations, queries, and builders are some of the
important basic combinators of SYB. We discuss the type of each of these.

A transformation transforms an argument value in some way, and returns a value of
the same type. It has the following type:

type GenericT = ∀a . Data a⇒ a→ a

There is also a monadic variant of transformations, which allows the use of a helper
monad in the transformation.

type GenericM m = ∀a . Data a⇒ a→ m a

A query function processes an input value to collect information, possibly of another
type.

type GenericQ r = ∀a . Data a⇒ a→ r

A builder produces a value of a particular type.

type GenericB = ∀a . Data a⇒ a

9 Datatypes of kind �→ � require the definition of dataCast1, and datatypes of kind �→ �→ �
require the definition of dataCast2. For datatypes of kind �, the default definition for these
methods (const Nothing) is appropriate.
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A builder that has access to a monad is called a “reader”.

type GenericR m = ∀a . Data a⇒ m a

Note however that the types of both GenericM and GenericR do not require m to be a
monad.

Many functions in the SYB library are suffixed with one of the letters T, M, Q, B,
or R to help identify their usage. Examples are the functions mkT, mkQ, mkM, extB,
extR, extQ, gmapT and gmapQ, some of which are defined in the rest of this section.

Basic Examples. Recall the increment function with which we started Section 7.1.
Its definition uses the higher-order combinators everywhere and mkT. The former is a
traversal pattern for transformations, applying its argument everywhere it can:

everywhere :: GenericT→ GenericT
everywhere f = f . gmapT (everywhere f )

Function gmapT maps a function only to the immediate subterms of an expression. It is
defined using gfoldl as follows:

gmapT :: Data a⇒ (∀b . Data b⇒ b→ b)→ a→ a

gmapT f x = unID (gfoldl k ID x)
where

k (ID c) y = ID (c (f y))
newtype ID x = ID{unID :: x}

Exercise 14. Function everywhere traverses a (multiway) tree. Define

everywhere′ :: GenericT→ GenericT

as everywhere but traversing in the opposite direction. �

Function mkT lifts a (usually type-specific) function to a function that can be applied to
a value of any datatype.

mkT :: (Typeable a, Typeable b)⇒ (b→ b)→ a→ a

For example, mkT (sin :: Float → Float), applies function sin if the input value is of
type Float, and the identity function to an input value of any other type. The combina-
tion of the two functions everywhere and mkT allows us to lift a type-specific function
to a generic function and apply it everywhere in a value.

Proceeding from transformations to queries, we define a function that sums all the
integers in an expression.

total :: GenericQ Int
total = everything (+) (0 ‘mkQ‘ lit) where

lit :: Expr Int→ Int
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lit (Lit x) = x
lit x = 0

Queries typically use the everything and mkQ combinators. Function everything ap-
plies its second argument everywhere in the argument, and combines results with its
first argument. Function mkQ lifts a type-specific function of type a → b, together
with a default value of type b, to a generic a query function of type GenericQ b. If the
input value is of type a, then the type-specific function is applied to obtain a b value,
otherwise it returns the default value. To sum the literals in an expression, function
total combines subresults using the addition operator (+), and it keeps occurrences of
literals, whereas all other values are replaced by 0.

Generic Maps. Functions such as increment and total are defined in terms of func-
tions everywhere, everything, and mkT, which in turn are defined in terms of the basic
combinators provided by the Data and Typeable classes. Many generic functions are
defined in terms of combinators of the Data class directly, as in the examples below.
We redefine function gsize defined in Section 7.3 using the combinator gmapQ, and we
define a function glength, which determines the number of children of a constructor,
also in terms of gmapQ.

gsize :: Data a⇒ a→ Int
gsize t = 1 + sum (gmapQ gsize t)
glength :: GenericQ Int
glength = length . gmapQ (const ())

The combinator gmapQ is one of the mapping combinators in Data class of the SYB
library.

gmapQ :: (∀a . Data a⇒ a→ u)→ a→ [u ]

It is rather different from the regular list map function, in that works on any datatype that
is an instance of Data, and that it only applies its argument function to the immediate
children of the top-level constructor. So for lists, it only applies the argument function
to the head of the list and the tail of the list, but it does not recurse into the list. This
explains why gsize recursively calls itself in gmapQ, while glength, which only counts
immediate children, does not use recursion.

Exercise 15. Define the function:

gdepth :: GenericQ Int

which computes the depth of a value of any datatype using gmapQ. The depth of a value
is the maximum number of constructors on any path to a leaf in the value. For example:

gdepth [1, 2 ] �
gdepth (Lit 1 + Lit 2 + Var "x") �

�
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Exercise 16. Define the function:

gwidth :: GenericQ Int

which computes the width of a value of any datatype using gmapQ. The width of a
value is the number of elements that appear at a leaf. For example:

gwidth () �
gwidth (Just 1) �

gwidth ((1, 2), (1, 2)) �
gwidth (((1, 2), 2), (1, 2)) �

�

Equality. Defining the generic equality function is a relatively simple task in the li-
braries we have introduced previously. Defining equality in SYB is not that easy. The
reason for this is that the structural representation of datatypes is not exposed directly—
in SYB, generic functions are written using combinators like gfoldl. To define generic
equality we need to generically traverse two values at the same time, and it is not im-
mediately clear how we can do this if gfoldl is our basic traversal combinator.

To implement equality, we need a generic zip-like function that can be used to pair
together the children of the two argument values. Recall the type of Haskell’s zipWith
function.

zipWith :: (a→ b→ c)→ [a ]→ [b ]→ [c ]

However, we need a generic variant that works not only for lists but for any datatype.
For this purpose, SYB provides the gzipWithQ combinator.

gzipWithQ :: GenericQ (GenericQ c)→ GenericQ (GenericQ [c ])

The type of gzipWithQ is rather intricate, but if we unfold the definition of GenericQ,
and omit the occurrences of ∀ and Data, the argument of gzipWithQ has type a→ b→
c. It would take too much space to explain the details of gzipWithQ. Defining equality
using gzipWithQ is easy:

geq :: Data a⇒ a→ a→ Bool

geq x y = geq′ x y
where

geq′ :: GenericQ (GenericQ Bool)
geq′ x′ y′ = (toConstr x′ toConstr y′) ∧ and (gzipWithQ geq′ x′ y′)

The outer function eq is used to constrain the type of the function to the type of equality.
Function geq′ has a more general type since it only uses gzipWithQ (besides some
functions on booleans).
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7.5 Support for Overloading

Suppose we want to implement the generic show function. Here is a first attempt using
the combinators we have introduced in the previous sections.

gshows :: Data a⇒ a→ String

gshows t = "("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshows) t)
++
")"

Function showConstr :: Constr → String is the only function we have not yet intro-
duced. Its behavior is apparent from its type: it returns the string representing the name
of the constructor. Function gshows returns the string representation of any input value.
However, it does not implement deriving Show faithfully: it inserts too many paren-
theses, and, what’s worse, it treats all types in a uniform way, so both lists and strings
are shown using the names of the constructors Cons and Nil.

gshows "abc" � "((:) (a) ((:) (b) ((:) (c) ([]))))"

The problem here is that gshows is “too generic”: we want its behavior to be non-generic
for certain datatypes, such as String. To obtain special behavior for a particular type we
use the ext combinators of the SYB library. Since function gshows has the type of a
generic query, we use the extQ combinator:

extQ :: (Typeable a, Typeable b)⇒ (a→ q)→ (b→ q)→ a→ q

This combinator takes an initial generic query and extends it with the type-specific case
given in its second argument. It can be seen as a two-way case branch: if the input term
(the last argument) is of type b, then the second function is applied. If not, then the first
function is applied. Its implementation relies on type-safe cast:

extQ f g a = maybe (f a) g (cast a)

Function cast relies on the typeOf method of the Typeable class (the type of which
we have introduced in Section 7.2), to guarantee type equality and ultimately uses
unsafeCoerce to perform the cast.

Using extQ, we can now define a better pretty-printer:

gshow :: Data a⇒ a→ String

gshow = (λt→
"("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshow) t)
++ ")"

) ‘extQ‘ (show :: String→ String)

Summarizing, the extQ combinator (together with its companions extT, extR, . . . ) is
the mechanism for overloading in the SYB approach.
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Exercise 17

1. Check the behavior of function gshow on a value of type Char, and redefine it to
behave just like the standard Haskell show.

2. Check the behavior of gshow on standard Haskell lists, and redefine it to behave just
like the standard Haskell show. Note: since the list datatype has kind �→ �, using
extQ will give problems. This problem is solved in SYB by defining combinators
for higher kinds. Have a look at the ext1Q combinator.

3. Check the behavior of gshow on standard Haskell pairs, and redefine it to behave
just like the standard Haskell show. Note: now the datatype has kind � → � → �,
but ext2Q is not defined! Fortunately, you can define it yourself. . .

4. Make the function more efficient by changing its return type to ShowS and using
function composition instead of list concatenation.

�

Exercise 18. Define function gread :: (Data a) ⇒ String → [ (a, String) ]. Decide
for yourself how complete you want your solution to be regarding whitespace, infix
operators, etc. Note: you don’t have to use gunfold directly: fromConstr, which is itself
defined using gunfold, can be used instead. �

7.6 Making Generic Functions Extensible

The SYB library as described above suffers from a serious drawback: after a generic
function is defined, it cannot be extended to have special behavior on a new datatype.
We can, as illustrated in Section 7.5 with function gshow, define a function with type-
specific behavior. But after such function is defined, defining another function to extend
the first one with more type-specific behavior is impossible. Suppose we want to extend
the gshow function with special behavior for a new datatype:

data NewDatatype = One String | Two [ Int] deriving (Typeable, Data)
gshow′ :: Data a⇒ a→ String

gshow′ = gshow ‘extQ‘ showNewDatatype where
showNewDatatype :: NewDatatype→ String
showNewDatatype (One s) = "String: "++ s
showNewDatatype (Two l) = "List: "++ gshow l

Now we have:
gshow′ (One "a") � "String: a"

as we expected. However:

gshow′ (One "a", One "b") � "((,) (One \"a\") (One \"b\"))"

This example illustrates the problem: as soon as gshow′ calls gshow, the type-specific
behavior we just defined is never again taken into account, since gshow has no knowl-
edge of the existence of gshow′.
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To make generic functions in SYB extensible, Lämmel and Peyton Jones [2005] ex-
tended the SYB library, lifting generic functions to Haskell’s type class system. A
generic function like gsize is now defined as follows:

class Size a where
gsize :: a→ Int

The default case is written as an instance of the form:

instance . . .⇒ Size a where . . .

Ad-hoc cases are instances of the form (using lists as an example):

instance Size a⇒ Size [a ] where . . .

This requires overlapping instances, since the default case is more general than any
type-specific extension. Fortunately, GHC allows overlapping instances. A problem is
that this approach also needs to lift generic combinators like gmapQ to a type class,
which requires abstraction over type classes. Abstraction over type classes is not sup-
ported by GHC. The authors then proceed to describe how to circumvent this by en-
coding an abstraction using dictionaries. This requires the programmer to write the
boilerplate code of the proxy for the dictionary type. We do not discuss this extension
and refer the reader to [Lämmel and Peyton Jones, 2005] for further information.

7.7 An Explicit View for SYB

Unlike in the two approaches we have seen before, the mechanism for run-time type
representation in SYB does not involve an explicit generic view on data. Scrap Your
Boilerplate Reloaded [Hinze et al., 2006] presents an alternative interpretation of SYB
by replacing the combinator based approach by a tangible representation of the structure
of values. The Spine datatype is used to encode the structure of datatypes.

data Spine :: �→ � where
Con :: a→ Spine a
(�) :: Spine (a→ b)→ Typed a→ Spine b

The Typed representation is given by:

data Typed a = ( :̂ ){typeOf :: Type a, val :: a}
data Type :: �→ � where

Int :: Type Int
List :: Type a→ Type [a ]
. . .

This approach represents the structure of datatype values by making the application of
a constructor to its arguments explicit. For example, the list [1, 2 ] can be represented
by10 Con (:) � (Int :̂ 1) � (List Int :̂ [2 ]). We can define the usual SYB combinators

10 Note the difference between the list constructor (:) and the Typed constructor ( :̂ ).
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such as gfoldl on the Spine datatype. Function gunfold cannot be implemented in the
approach. Scrap Your Boilerplate Revolutions [Hinze and Löh, 2006] solves this prob-
lem by introducing the “type spine” and “lifted spine” views. These views allow the
definition of not only generic readers such as gunfold, but even functions that abstract
over type constructors, such as map, in a natural way. Additionally, functions taking
multiple arguments (such as generic equality) also become straightforward to define.

A disadvantage of having the explicit Spine view that generic and non-generic uni-
verse extension require recompilation of type representations and generic functions. For
this reason, these variants cannot be used as a library, and should be considered a de-
sign pattern instead. It is possible to make the variants extensible by using a similar
approach as discussed in Section 7.6: abstraction over type classes. We refer the reader
to [Hinze et al., 2006, Hinze and Löh, 2006] for further information.

7.8 Case Study: Selections in Exercises Assistants

One of the extensions to the exercise assistants that we are implementing is that a stu-
dent may select a subexpression and ask for possible rewrite rules for that subexpres-
sion. This means that the student selects a range in a pretty-printed expression and
chooses a rule to apply to the selection.

Before we can present the possible rewrite rules, we want to check if a selected
subexpression is valid. Determining the validity of a subexpression may depend on the
context. In the general case, a subexpression is valid if it is a typed value that appears in
the abstract syntax tree of the original expression. However, in some cases this definition
might be too strict. For instance, for arithmetic expressions, the expression 2 + 3 would
not be a subexpression of 1 + 2 + 3, because the plus operator is left-associative, hence
only 1 + 2 is a valid subexpression. Therefore we consider a subexpression to be valid
if it appears in the original expression modulo associative operators and special cases
(such as lists).

Checking whether a subexpression is valid or not can be determined in various ways.
It is important to realize that the problem is strongly connected to the concrete syntax
of the datatype. The validity of a selection depends on how terms are pretty-printed on
the screen. Aspects to consider are fixity and associativity of operators, parentheses,
etc. Simply parsing the selection will not give an acceptable solution. For instance,
in the expression 1 + 2 ∗ 3, the selection 1 + 2 parses correctly, but it is not a valid
subexpression.

For these reasons, the selection problem depends on parsing and pretty-printing, and
the way a datatype is read and shown to the user. Therefore we think that the best way to
solve this problem is to devise an extended parser or pretty-printer, which additionally
constructs a function that can check the validity of a selection.

However, parsers and pretty-printers for realistic languages are usually not generic.
Typically, operator precedence and fixity are used to reduce the number of parenthe-
ses and to make the concrete syntax look more natural. Therefore, parsers and pretty-
printers are often hand-written, or instances of a generic function with ad-hoc cases.

For conciseness, we will present only a simple solution to this problem, which works
for datatypes that are shown with the gshow function of the previous section. For sim-
plicity, we do not deal with associativity or infix constructors. We use a state monad
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transformer with an embedded writer monad. The state monad keeps track of the cur-
rent position using an Int, while the writer monad gradually builds a Map. Ideally, this
would map a selection range (consisting of a pair of Ints) to the type of that selec-
tion. This is necessary because an expression might contain subexpressions of different
types. However, for simplicity we let Type be singleton.

type Range = (Int, Int)
type Type = ()
type Selections = Map Range Type

type Pos = Int
type MyState = StateT Pos (Writer Selections) ()

Using the monad transformer in this way enables us to maintain the position as state
while building the output Map at the same time, avoiding manual threading of these
values.

The top-level function selections runs the monads. Within the monads, we first get
the current position (m). Then we calculate the position at the end of the argument
expression (n), and add the selection of the complete expression (m, n) to the output
Map. The main worker function selsConstr calculates the selections within the children
of the top-level node. selsConstr defines the general behavior, and through overloading
pairs and strings are given ad-hoc behavior.

selections :: Data a⇒ a→ Selections
selections t′ = execWriter (evalStateT (sels′ t′) 0) where

sels′ :: Data a⇒ a→ MyState
sels′ t = do

m← get
let n = m + length (gshow t)
tell (M.singleton (m, n) ())
(selsConstr ‘ext2Q‘ selsPair ‘extQ‘ selsString) t
put n

For the children of the current term we use different functions based on the type. After
the children are done we set the current position to the end of this term. This means that
the functions that process the children do not need to care about updating the position
to reflect finalizing elements (such as a closing bracket, for instance).

Children are dealt with as follows. In case there are no children, the position has
to be updated to take into account the opening bracket, the length of the construc-
tor and the closing bracket. If there are children, we recursively apply the worker
function to each child. However, the arguments of a constructor are separated by a
space, so we have to increment the position in between each child. This is done with
intersperse (modify (+1)). Finally the list of resulting monads is sequenced:

selsConstr :: Data a⇒ a→ MyState
selsConstr t = do

when (nrChildren t > 0) $
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modify (+(2 + length (showConstr (toConstr t))))
sequence $ intersperse (modify (+1)) $ gmapQ sels′ t

The nrChildren function returns the number of children of the argument expression,
irrespective of their type.

As with function gshow, we need different code to handle some specific types. For
pairs and Strings we use the following:

selsPair :: (Data a, Data b)⇒ (a, b)→ MyState
selsPair (a, b) = do

modify (+1)
sels′ a
modify (+1)
sels′ b

selsString :: String→ MyState
selsString t = return ()

The trivial definition of selsString ensures that a String is not seen as a list of characters.
We can check that our function behaves as expected (for the Logics type of

Section 3.4):

map fst . M.toList . selections $ (Or (Not (Lit True)) (Lit False)) �
[ (0, 37), (4, 22), (9, 21), (14, 20), (23, 36), (28, 35) ]

Indeed we can confirm that

(0, 37) corresponds to (Or (Not (Lit (True))) (Lit (False)))
(4, 22) corresponds to (Not (Lit (True)))
(9, 21) corresponds to (Lit (True))

(14, 20) corresponds to (True)
(23, 36) corresponds to (Lit (False))
(28, 35) corresponds to (False)

As mentioned before, the selections function presented in this section has been sim-
plified in many ways. Possible improvements include support for operator fixity and
precedence (which change the parentheses), mapping a range to the actual value in the
selection, dealing with associative operators and decoupling from a fixed pretty-printer
(gshow in this case). Additionally, selections of constant types (such as Bool in the
example above) are typically not relevant and should not be considered valid.

Exercise 19. Extend the selections function with a specific case for lists. Valid selec-
tions within a list are every element and the entire list. Additionally, change Type to
Dynamic (introduced in Section 3.6). �
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8 Comparison of the Libraries

In the sections 5, 6, and 7, we introduced three libraries for generic programming in
Haskell. There are many other libraries that we exclude for lack of space (see Sec-
tion 9.1 for a list). The obvious question a Haskell programmer who wants to implement
a generic program now asks is: Which library do I use for my project? The answer to
this question is, of course, that it depends. In this section, we present an abridged com-
parison of the three libraries we have seen, focusing mainly on the differences between
them. For further study, we refer the reader to a recent, extensive comparison of multiple
generic programming libraries and their characteristics [Rodriguez et al., 2008b].

8.1 Differences

There are a few aspects in which the three libraries we have presented differ
considerably.

Universe Size. What are the datatypes for which generic universe extension is possi-
ble? In Section 3, we saw a variety of Haskell datatypes. The more datatypes a library
can support, the more useful that library will be. None of the libraries supports exis-
tentially quantified datatypes or GADTs. On the other hand, all libraries support all the
other datatypes mentioned.

SYB’s automatic derivation does not work for higher-order kinded datatypes, but the
programmer can still add the instances manually. Datatypes which are both higher-order
kinded and nested are not supported by SYB. Both LIGD and EMGM can support such
datatypes, but they cannot be used with EMGM’s representation dispatchers.

First-class Generic Functions. If generic functions are first-class, they can be passed
as argument to other generic functions. gmapQ (as introduced in Section 7.4) is an
example of a function which can only be defined if generic functions are first-class.

In LIGD and SYB, a generic function is a polymorphic Haskell function, so it is a
first-class value in Haskell implementations that support rank-n polymorphism.

EMGM supports first-class generic functions but in a rather complicated way. The
type class instance for a higher-order generic function needs to track calls to a generic
function argument. This makes the definition of gmapQ in EMGM significantly more
complex than other functions.

Ad-hoc Definitions for Datatypes. A library supports ad-hoc definitions for datatypes
if it can define functions with specific behavior on a particular datatype while the other
datatypes are handled generically. Moreover, the use of ad-hoc cases should not require
recompilation of existing code (for instance the type representations).

In LIGD, giving ad-hoc cases requires extending the type representation datatype,
and hence recompilation of the module containing type representations. This means the
library itself must be changed, so we consider LIGD not to support ad-hoc definitions.

In SYB, ad-hoc cases for queries are supported by means of the mkQ and extQ com-
binators. Such combinators are also available for other traversals, for example trans-
formations. The only requirement for ad-hoc cases is that the type being case-analyzed
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should be an instance of the Typeable type class. The new instance does not require
recompilation of other modules. In EMGM, ad-hoc cases are given as instances of Rep,
FRep, or one of the other representation dispatchers. Recompilation of the library is not
required, because ad-hoc cases are given as type class instances.

Extensibility. If a programmer can extend the universe of a generic function in a dif-
ferent module without the need for recompilation, then the approach is extensible. This
is the case for libraries that allow the extension of the generic show function with a case
for printing lists, for instance. Extensibility is not possible for approaches that do not
support ad-hoc cases. For this reason, LIGD is not extensible.

The SYB library supports ad-hoc definitions, but does not support extensible generic
functions (as outlined in Section 7.6).

In EMGM, ad-hoc cases are given in instance declarations, which may reside in
separate modules; therefore, the library supports extensibility.

Overhead of Library Use. The overhead of library use can be compared in different
ways including automatic generation of representations, number of structure represen-
tations, and amount of work to define and instantiate a generic function.

SYB is the only library that offers support for automatic generation of representa-
tions. It relies on GHC to generate Typeable and Data instances for new datatypes. This
reduces the amount of work for the programmer.

The number of structure representations is also an important factor of overhead.
LIGD and EMGM have two sorts of representations: a representation for kind � types
and representations for type constructors, which are arity-based. The latter consists of
a number of arity-specific representations. For example, to write the map function we
have to use a representation of arity two. Since there are useful generic functions re-
quiring a representation of arity three, this makes a total of four type representations for
these libraries: one to represent kind � types, and three for all useful arities. In SYB,
the structure representation is given in a Data instance. This instance has two methods
which are used for generic consumer and transformer functions (gfoldl) and generic
producer functions (gunfold). Therefore, every datatype needs two representations to
be used with SYB functions.

Instantiating a generic function should preferably also be simple. Generic functions
require a value representing the type to which they are instantiated. This representation
may be explicitly supplied by the programmer or implicitly derived. In approaches that
use type classes, representations can be derived, thus making instantiation easier for the
user. Such is the case for SYB and EMGM. LIGD uses an explicit type representation,
which the user has to supply with every generic function call.

Practical Aspects. With practical aspects we mean the availability of a library distri-
bution, quality of documentation, predefined generic functions, etc.

LIGD does not have a distribution online. EMGM recently gained an online sta-
tus with a website, distribution, and extensive documentation [Utrecht, 2008]. Many
generic functions and common datatype representations are provided. SYB is distributed
with the GHC compiler. This distribution includes a number of traversal combinators
for common generic programming tasks and Haddock documentation. The GHC com-
piler supports the automatic generation of Typeable and Data instances.



Libraries for Generic Programming in Haskell 223

Portability. The fewer extensions of the Haskell 98 standard (or of the coming Haskell
Prime [Haskell Prime list, 2006] standard) an approach requires, the more portable it is
across different Haskell compilers.

LIGD, as presented here, relies on GADTs for the type representation. It is not yet
clear if GADTs will be included in Haskell Prime. LIGD also requires rank-2 types
for the representations of higher-kinded datatypes, but not for other representations or
functions. Hence rank-n types are not essential for the LIGD approach, and LIGD is the
most portable of the three libraries.

Generics for the Masses as originally introduced [Hinze, 2004] was entirely within
Haskell 98; however, EMGM as described in these notes is not as portable. It relies on
multiparameter type classes to support implicit type representations and type operators
for convenience (both currently slated to become part of Haskell Prime). The features
for supporting convenient extensibility (Sections 6.5 and 6.6) also rely on overlapping
and undecidable instances, and we do not know if these will become part of Haskell
Prime.

SYB requires rank-n polymorphism for the type of the gfoldl and gunfold combina-
tors, unsafeCoerce to implement type safe casts and compiler support for deriving Data
and Typeable instances. Hence, it is the least portable of the three libraries.

8.2 Similarities

There are a couple of aspects in which the libraries are similar.

Abstraction Over Type Constructors. Generic functions like map or crush require
abstraction over type constructors to be defined. Type constructors are types which ex-
pect a type argument (and therefore have kind � → �), and represent containers of
elements. All libraries support the definition of such functions, although the definition
in SYB is rather cumbersome11.

Separate Compilation. Is generic universe extension modular? A library that can
instantiate a generic function to a new datatype without recompiling the function defi-
nition or the type/structure representation is modular.

All presented libraries are modular. In LIGD, representation types have a constructor
to represent the structure of datatypes, namely RType. It follows that generic universe
extension requires no extension of the representation datatypes and therefore no recom-
pilation. In EMGM, datatype structure is represented by rtype, so a similar argument
applies. In SYB, generic universe extension is achieved by defining Data and Typeable
instances for the new datatype, which does not require recompilation of existing code
in other modules.

Multiple Arguments. Can a generic programming library support a generic function
definition that consumes more than one generic argument? Functions such as generic
equality require this. The LIGD and EMGM approaches support the definition of generic

11 This has recently been shown by Reinke [2008] and Kiselyov [2008]. However, the definition
is rather intricate, and as such we do not present it in these notes.
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equality. Furthermore, equality is not more difficult to define than other consumer func-
tions. Equality can also be defined in SYB, but the definition is not as direct as for other
functions such as gshow. In SYB, the gfoldl combinator processes just one argument at
a time. For this reason, the definition of generic equality has to perform the traversal of
the arguments in two stages using the generic zip introduced in Section 7.4.

Constructor Names. All generic programming libraries discussed in these notes pro-
vide support for constructor names in their structure representations. These names are
used by generic show functions.

Consumers, Transformer and Producers. LIGD and EMGM can define consumer,
transformer, and producer functions. SYB can also define them, but consumers and
producers are written using different combinators.

9 Conclusions

These lecture notes serve as an introduction to generic programming in Haskell. We
begin with a look at the context of generics and variations on this theme. The term
“generics” usually involves some piece of a program parametrised by some other piece.
The most basic form is the function, a computation parametrised by values. A more
interesting category is genericity by the shape of a datatype. This has been studied
extensively in Haskell, because datatypes plays a central role in program development.

We next explore the world of datatypes. From monomorphic types with no ab-
straction to polymorphic types with universal quantification to existentially quantified
types that can simulate dynamically typed values, there is a wide range of possibilities
in Haskell. The importance of datatypes has led directly to a number of attempts to
develop methods to increase code reuse when using multiple, different types.

In the last decade, many generic programming approaches have resulted in libraries.
Language extensions have also been studied, but libraries have been found to be easier
to ship, support, and maintain. We cover three representative libraries in detail: LIGD,
EMGM, and SYB. LIGD passes a run-time type representation to a generic function.
EMGM relies on type classes to represent structure and dispatching on the appropriate
representation. SYB builds generic functions with basic traversal combinators.

Having introduced variants of generic programming libraries in Haskell, we can
imagine that the reader wants to explore this area further. For that purpose, we pro-
vide a collection of references to help in this regard.

Lastly, we speculate on the future of libraries for generic programming. Given what
we have seen in this field, where do we think the research and development work will
be next? What are the problems we should focus on, and what advances will help us
out?

9.1 Further Reading

We provide several categories for further reading on topics related to generic program-
ming, libraries, programming languages, and similar concepts or background.
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Generic Programming Libraries in Haskell. Each of these articles describes a par-
ticular generic programming library or approach in Haskell.

LIGD [Cheney and Hinze, 2002]
SYB [Lämmel and Peyton Jones, 2003]

[Lämmel and Peyton Jones, 2004]
PolyLib [Norell and Jansson, 2004a]
EMGM [Hinze, 2004, 2006]

[Oliveira et al., 2006]
SYB with Class [Lämmel and Peyton Jones, 2005]
Spine [Hinze et al., 2006]

[Hinze and Löh, 2006]
RepLib [Weirich, 2006]
Smash your Boilerplate [Kiselyov, 2006]
Uniplate [Mitchell and Runciman, 2007]
Generic Programming, Now! [Hinze and Löh, 2007]

Generic Programming in Other Programming Languages. We mention a few refer-
ences for generic programming using language extensions and in programming
languages other than Haskell.

Generic Haskell [Löh, 2004, Hinze and Jeuring, 2003b]
OCaml [Yallop, 2007]
ML [Karvonen, 2007]
Java [Palsberg and Jay, 1998]
Clean [Alimarine and Plasmijer, 2002]
Maude [Clavel et al., 2000]
Relational languages [Backhouse et al., 1991]

[Bird and Moor, 1997]
Dependently typed languages [Pfeifer and Ruess, 1999]

[Altenkirch and McBride, 2003]
[Benke et al., 2003]

Comparison of Techniques. Here we list some references comparing different tech-
niques of generic programming, whether that be with language extensions, libraries, or
between different programming languages.

Approaches in Haskell [Hinze et al., 2007]
Libraries in Haskell [Rodriguez et al., 2008b]

[Rodriguez et al., 2008a]
Language Support [Garcia et al., 2007]
C++ Concepts and Haskell Type Classes [Bernardy et al., 2008]

Background. Lastly, we add some sources that explain the background behind generic
programming in Haskell. Some of these highlight connections to theorem proving and
category theory.
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Generic Programs and Proofs [Hinze, 2000]
An Introduction to Generic Programming [Backhouse et al., 1999]
ADTs and Program Transformation [Malcolm, 1990]
Law and Order in Algorithmics [Fokkinga, 1992]
Functional Programming with Morphisms [Meijer et al., 1991]

9.2 The Future of Generic Programming Libraries

There has been a wealth of activity on generic programming in the last decade and on li-
braries for generic programming in Haskell in the last five years. Generic programming
is spreading through the community, and we expect the use of such techniques to in-
crease in the coming years. Generic programming libraries are also getting more mature
and more powerful, and the number of examples of generic programs is increasing.

We expect that libraries will replace language extensions such as Generic Haskell—
and possibly Generic Clean [Alimarine and Plasmijer, 2002]—since they are more flex-
ible, easier to maintain and distribute, and often equally as powerful. In particular, if the
community adopts type families and GADTs as common programming tools, there is
no reason to have separate language extensions for generic programming. Since each
generic programming library comes with some boilerplate code, for example for gen-
erating embedding-projection pairs, we expect that generic programming libraries will
be accompanied by code-generation tools.

Generic programs are useful in many software packages, but we expect that compil-
ers and compiler-like programs will particularly profit from generic programs. However,
to be used in compilers, generic programs must not introduce performance penalties. At
the moment, GHC’s partial evaluation techniques are not powerful enough to remove
the performance penalty caused by transforming values of datatypes to values in type
representations, performing the generic functionality, and transforming the result back
again to the original datatype. By incorporating techniques for partial evaluation of
generic programs [Alimarine and Smetsers, 2004], GHC will remove the performance
overhead and make generic programs a viable alternative.
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Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 55–72. Springer, Heidelberg
(1999)

Reinke, C.: Traversable functor data, or: X marks the spot (2008),
http://www.haskell.org/pipermail/generics/2008-June/000343.
html

Rodriguez, A.: Towards Getting Generic Programming Ready for Prime Time. PhD thesis,
Utrecht University (2009)

Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira, B.C.d.S.: Comparing
libraries for generic programming in haskell. Technical report, Utrecht University (2008a)

Rodriguez, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira, B.C.d.S.: Comparing
libraries for generic programming in haskell. In: Haskell Symposium 2008 (2008b)
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