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Abstract
Datatype-generic programming increases program reliability by re-
ducing code duplication and enhancing reusability and modular-
ity. Several generic programming libraries for Haskell have been
developed in the past few years. These libraries have been com-
pared in detail with respect to expressiveness, extensibility, typing
issues, etc., but performance comparisons have been brief, limited,
and preliminary. It is widely believed that generic programs run
slower than hand-written code. In this paper we present an exten-
sive benchmark suite for generic functions and analyze the potential
for automatic code optimization at compilation time. Our bench-
mark confirms that generic programs, when compiled with the stan-
dard optimization flags of the Glasgow Haskell Compiler (GHC),
are substantially slower than their hand-written counterparts. How-
ever, we also find that more advanced optimization capabilities of
GHC can be used to further optimize generic functions, sometimes
achieving the same efficiency as hand-written code.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

Keywords benchmark, functional programming, generic pro-
gramming, Haskell, optimization

1. Introduction
Datatype-generic programming, as defined by Gibbons (2007), has
been around for many years (Backhouse et al. 1999). Its promi-
nence is especially noted in the lazy, strongly-typed functional lan-
guage Haskell (Peyton Jones et al. 2003), where at least twelve dif-
ferent approaches have appeared. Rodriguez Yakushev et al. (2008)
presented a detailed comparison of nine libraries for generic pro-
gramming (three new libraries have appeared since then). This
comparison contains a brief performance analysis. The analysis in-
dicates that the use of a generic approach could result in an increase
of the running time by a factor of as much as 80. Van Noort et
al. (2008) also report severe performance degradation when com-
paring a generic approach to a similar but type-specific variant.
While this is typically not a problem for smaller examples, it can
severely impair adoption of generic programming in larger con-
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texts. This problem is particularly relevant because generic pro-
gramming techniques are especially applicable to large applications
where performance is crucial, such as structural editors or compil-
ers.

To understand the source of performance degradation when us-
ing a generic function from a particular generic programming li-
brary, we have to analyze the implementation of the library. The
fundamental idea behind generic programming is to represent all
types and values by a small set of datatypes. Types in this set are
called the generic representation types, as they are the building
blocks of the structural representation of all other types. Haskell
supports the definition of algebraic datatypes, which can be struc-
turally represented as sums of products. This means that if we have
a way to represent sums (alternatives) and products (tuples), we
can represent all algebraic datatypes. Functions can then be de-
fined to operate on this sum-of-products structure. When coupled
with conversion functions from the original datatype into the sum-
of-products structure and back, these functions effectively become
datatype-generic, in the sense that they will work for all datatypes.

While the conversion functions are typically trivial and can be
automatically generated, the overhead they impose is not automat-
ically removed. Conversions to and from the generic representa-
tions, as well as value-level representations of types, are not elim-
inated by compilation, and conversions are performed at run-time.
In general, conversions are the source of inefficiency for generic
programming libraries. In the past, approaches of generic program-
ming were not implemented as a library, but instead as code gen-
erators or preprocessors (Hinze et al. 2007). This meant that opti-
mizations (such as automatic generation of type-specialized vari-
ants of generic functions) could be implemented externally. With
the increase in expressivity of the Haskell type system, particularly
with the extensions of the flagship compiler GHC, library-based
approaches have become more popular, as they are able to offer
the same functionality without the need to install an external ap-
plication. However, this also means that all optimizations have to
be performed by the compiler, as the library approach no longer
generates code itself.

GHC compiles by transformation, first converting the input into
a core language and then proceeding to transform the core into
more optimized versions, in a series of sequential passes. While
it performs a wide range of optimizations, by default it seems to
be unable to remove the overhead incurred by using generic repre-
sentations. Therefore generic libraries perform slower than hand-
written type-specific counterparts. Alimarine and Smetsers (2004)
show that in many cases it is possible to remove all overhead from
generics by performing a specific form of symbolic evaluation. In
fact, their approach is not restricted to optimizing generics, and
GHC naturally performs symbolic evaluation as part of its op-
timizations. We observe that GHC can already optimize generic
functions, in many cases achieving the same performance as hand-



written code, without the need for any additional manipulation of
the compiler.

The remainder of this paper discusses how GHC can optimize
generic functions, and tests the optimizations through benchmark-
ing. Specifically, our contributions are the following:

• Highlighting the importance of inlining for optimization of
generic programs, by inspecting the generated core code with
different levels of keenness to inline.
• Realizing that GHC already provides mechanisms for optimiz-

ing generic programs up to the efficiency of hand-written code.
This also emphasizes the importance of being able to customize
the behavior of the inliner.
• An overview of some important aspects of the design of a

benchmark suite for functional programs, which are crucial for
obtaining relevant and meaningful results.
• The results of benchmarking several generic functions, applied

to different datatypes and compiled with different optimization
levels. We analyze the results and gather a significant amount
of information and evidence to drive further optimization of
current generic programming libraries.

We proceed by introducing a simple but representative library
for generic programming in Haskell (Section 2). In Section 3 we
follow the evolution of some generic code through the GHC sim-
plifier to understand the source of inefficiencies. Our benchmark
design and results are presented in Section 4. In Section 5 we con-
clude, point to directions for future work, and give instructions for
authors and users of generic programming libraries interested in
optimizing the performance of their programs.

2. The regular library
We present the regular library as a typical example of generic pro-
gramming in Haskell. We will use it in our examples of optimiza-
tion through inlining in Section 3. We first show how datatypes and
values are represented generically and then proceed to define some
example generic functions. For a broader and more detailed intro-
duction to generic programming libraries in Haskell, the reader is
referred to Jeuring et al. (2009).

The regular library1 was first described as part of the rewriting
framework of Van Noort et al. (2008), and can be viewed as a sim-
ple version of multirec (Rodriguez Yakushev et al. 2009). While
multirec uses higher-order fixed points for representing mutu-
ally recursive datatypes, regular restricts itself to single, regular
datatypes. We use it as a starting point for our optimization efforts
because it is both representative for a generic programming library
and relatively simple. It is representative in the sense that it em-
ploys a sum-of-products view with fixed points. Both multirec
and emgm (Oliveira et al. 2007) use a sum-of-products view (al-
though they treat fixed points differently). While regular uses a
significant extension of Haskell 98 (type families), it remains sim-
ple in the sense that its inner workings are relatively straightfor-
ward. Therefore we also expect generated core code from regular
to be easier to understand than, say, code from syb (Lämmel and
Peyton Jones 2003). We discuss emgm, multirec, and syb in our
benchmark (Section 4.4), but for now we focus on regular.

2.1 Generic representation
The core of a generic programming library is the representation
of datatypes. In regular, type families (Schrijvers et al. 2008)
are used to associate a pattern functor with each datatype. This
pattern functor expresses a sum-of-products fixed-point view on

1 http://www.cs.uu.nl/wiki/GenericProgramming/Regular

the datatype. For this, a number of primitive generic representation
types are required2:

data (f + g) r = L (f r) | R (g r)
data (f × g) r = f r × g r
data K a r = K a
data I r = I r
data U r = U

infixr 6 +
infixr 7× .

Different alternatives (constructors) of a datatype are encoded with
the + type. Constructors with no arguments are encoded with
the unit type U, and multiple arguments are represented with the
product type ×. The sum and product types are declared as right-
associative infix type constructors.

The arguments of a constructor are either constant types (repre-
sented with K), or a recursive occurrence of the type being defined
(represented with I). All representation types are functorial, carry-
ing the type argument r which denotes the recursive type, which is
used in I.

Generic functions such as show or read also need information
about constructor names. These are encoded with the C representa-
tion type and the Constructor class:

data C c f r = C (f r)

class Constructor c where
conName :: t c (f ::∗→ ∗) r→ String ◦

This style of encoding constructors, which is also used in multirec,
requires the declaration of an auxiliary datatype per constructor of
the datatype to represent. We give an example below.

We encapsulate the representation of a datatype and conversion
functions between a datatype and its representation in the Regular
type class:

class Regular a where
type PF a ::∗→ ∗
from ::a → PF a a
to ::PF a a→ a .

To use a generic function on some datatype a, an instance of
Regular a has to be provided. The type family PF is used to rep-
resent the pattern functor of a type: its view as a fixed-point of
a sum-of-products. The from and to functions witness an isomor-
phism between a and PF a a. Note that PF a, of kind ∗ → ∗, de-
notes the generic representation type of a. The last argument of PF
denotes the type of the recursive occurrences. Since we use PF a a,
this means that we have a shallow generic encoding: the recursive
occurrences are again values of the original type a.

To better understand the generic representation in regular,
we give an instance of Regular for a datatype representing logic
expressions:

data Logic = Logic ∨ Logic -- disjunction
| Var String -- variables
| Not Logic -- negation .

For the constructor representations, we create a datatype per con-
structor and give an instance of the Constructor class:

data (∨)
data Var
data Not

instance Constructor (∨) where conName = ":||:"

instance Constructor Var where conName = "Var"

instance Constructor Not where conName = "Not" .

2 For presentation purposes we have beautified the Haskell code. We use
symbols freely, subscripts and superscripts, and formatting to differentiate
constructors and types.
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The instance of Regular exposes the fixed-point view of Logic and
conversion functions:

instance Regular Logic where
type PF Logic = C (∨) (I× I)

+ C Var (K String)
+ C Not I

from (p ∨ q) = L (C ((I p)× (I q)))
from (Var x) = R (L (C (K x)))
from (Not p) = R (R (C (I p)))

to (L (C ((I p)× (I q)))) = p ∨ q
to (R (L (C (K x)))) = Var x
to (R (R (C (I p)))) = Not p .

Note the shallow encoding in the recursive cases: Not p, for in-
stance, is converted to R (R (C (I p))). The p variable is of type
Logic. This is therefore a one-level generic structure, with the orig-
inal datatype occurring at the recursive positions.

All this code is necessary for each datatype intended to be used
with regular. Fortunately, its structure is easily derivable from the
datatype declaration, and the library comes with Template Haskell
(Sheard and Peyton Jones 2002) code to automatically generate it.

2.2 Generic functions
We proceed to define generic functions to operate on regular
datatypes. In regular, generic functions are defined using type
classes. Let us start with generic map. Since we have a fixed-point
view on data, our representation types are functors, so this function
is trivial to write. We start by defining a type class:

class GMap f where
gmap :: (a→ b)→ f a→ f b .

We then write an instance for each of the generic representation
types. The only interesting case for generic map is I, where the
function to be mapped is applied. Units and constants are returned
unchanged. For constructors, sums and products, we keep the struc-
ture and recursively call the function on the children:

instance GMap I where
gmap f (I r) = I (f r)

instance GMap (K a) where
gmap (K x) = K x

instance GMap U where
gmap U = U

instance (GMap f,GMap g)⇒ GMap (f + g) where
gmap f (L x) = L (gmap f x)
gmap f (R x) = R (gmap f x)

instance (GMap f,GMap g)⇒ GMap (f × g) where
gmap f (x× y) = gmap f x× gmap f y

instance (GMap f)⇒ GMap (C c f) where
gmap f (C x) = C (gmap f x) .

We analyze the generated code for this function in Section 3.1.
Making use of the constructor information, we can write generic

show. For simplicity we present an inefficient version using (++).
A version using an accumulating parameter is written similarly.

class GShow f where
gshowf :: (a→ String)→ f a→ String .

Given the shallow encoding of regular, we need to pass a function
to apply at the recursive points. This is the first argument of gshowf .
This function is applied in the I case. For constants, we use the
standard Haskell show from the Show class. At the constructor, we
print the constructor name as defined in the Constructor instance.

instance GShow I where
gshowf f (I r) = f r

instance (Show a)⇒ GShow (K a) where

gshowf (K x) = show x

instance GShow U where
gshowf U = ""

instance (GShow f,GShow g)⇒ GShow (f + g) where
gshowf f (L x) = gshowf f x
gshowf f (R x) = gshowf f x

instance (GShow f,GShow g)⇒ GShow (f × g) where
gshowf f (x× y) = gshowf f x++" "++gshowf f y

instance (Constructor c,GShow f)⇒ GShow (C c f) where
gshowf f cx@(C x) = "("++ conName cx++" "

++gshowf f x++")" .

We can now write a top-level function that calls gshowf with
the right arguments:

gshow :: (Regular a,GShow (PF a))⇒ a→ String
gshow x = gshowf gshow (from x) .

Given any value of a datatype of which there is a Regular instance,
we can convert it to its structural type with from and invoke gshowf .
The recursive points are again of type a, so they are shown using
gshow, which will take care of the conversion to the structural type.
This type of indirect recursion is present in most generic functions
in regular.

Many other functions can be written in regular, such as equal-
ity, value generation and folds. These functions are actually all part
of the library.

3. Optimizing generics through inlining
Previous research has shown that generic functions perform worse
than hand-written equivalents, sometimes taking up to 80 times
longer to produce the same result (Rodriguez Yakushev 2009, Fig-
ure 4.9). While many applications might not be affected by this
performance overhead, it can completely preclude generics in some
cases. In at least one case, this spurred the development of a new
generic programming library (Brown and Sampson 2009).

The source of inefficiency in generic programs is the overhead
of specialization. The generated code for generic functions will typ-
ically contain explicit conversions to and from the generic represen-
tation types, since the function’s behavior was specified on these
types. However, a more clever specialization could eliminate all of
the generic representation. Indeed Alimarine and Smetsers (2004)
have shown that generic functions can benefit from symbolic evalu-
ation, enabling the generation of code which contains no construc-
tors others than those of the concrete type the function operates on.

We argue that an extra step of symbolic evaluation is not neces-
sary, since clever inlining coupled with the standard optimizations
of GHC can perform the same task. The inliner of GHC provides
several flags to tweak its behavior, as well as supporting INLINE
pragmas to annotate functions (Peyton Jones and Marlow 2002).
However, even its authors admit that “inlining is a black art”; care-
less use of the inliner can easily cause code bloat or even decrease
performance. In this section we aim to illustrate the results of inlin-
ing in the compilation of two example generic functions: identity
and show.

3.1 Generic identity
We define generic identity using the gmap function defined in
Section 2.2:

gid :: (Regular a,GMap (PF a))⇒ a→ a
gid = to◦gmap id ◦ from .

This “one-layer identity” simply applies the identity function to
the children of its input. It is clear that for a properly written
instance of the Regular class, gid ≡ id. To evaluate the result of



the optimizations on the generated code for this function, we use a
specialized version instead:

gidLogic ::Logic→ Logic
gidLogic = to◦gmap id ◦ from .

This is the typical use case: a user applies a generic function
to a concrete type. Additionally, the compiler now knows which
Regular instance to use. With this information, it is trivial to see
that gidLogic l≡ l forall l of type Logic:

to (gmap id (from l))

⇒ { choose l to be p ∨ q (other constructors are similar) }
to (gmap id (from (p ∨ q)))

≡ { definition of fromLogic }
to (gmap id (L (C (I p× I q))))

≡ { definition of gmap+, gmapC, gmap× }
to (L (C (gmap id (I p)× gmap id (I q))))

≡ { definition of gmapI }
to (L (C (I (id p)× (I (id q)))))

≡ { definition of id, toLogic }
p ∨ q .

But can GHC reach a similar conclusion through its optimiza-
tion phases? We were positively surprised to see that compiling
gidLogic with the flag O1 alone produces the following core code3:

gidO1Logic ::Logic→ Logic

gidO1Logic = λ (x ::Logic)→ to (from x) .

The generic function disappeared completely, and only the conver-
sion to and from the generic representation remains. However, this
is still insufficient, since we also know that toLogic ◦ fromLogic ≡ id.
Compiling with O2 produces the same code for gidLogic.

At this point, we could use rewrite rules (Peyton Jones et al.
2001) to encode this last equality. However, there is no need to
manually specify such rules. GHC offers some flags to tweak the
behavior of the inliner, which we can use to achieve a similar result.
We summarize them with their current default values in Table 1.

Flag Default Abbr.

-funfolding-creation-threshold 45 CT
-funfolding-fun-discount 6 FD
-funfolding-keeness-factor 1.5 KF
-funfolding-use-threshold 6 UT

Table 1. GHC flags to tweak the inliner.

The behavior of each flag is the following.

-funfolding-creation-threshold governs the exposure of a
function’s code to the interface file. GHC, as a modular com-
piler, compiles each module separately and generates an inter-
face file, which is then used when the module is imported. To
allow cross-module inlining, some functions have their entire
code exposed in the interface file. However, larger functions
might not be exposed by default, since this would create a large
interface file. Increasing -funfolding-creation-threshold
raises the limit for exposing the definition of a function in the
interface file.

-funfolding-use-threshold defines the threshold for actually
performing inlining. Below this size, a function definition will
be unfolded at a call site. If the function size is higher than this
threshold, it will not be unfolded. This is generally the most
critical value in determining inlining.

3 Core language is a small functional language inspired by System F .

-funfolding-fun-discount affects the calculation of the size
of a function, which in turn affects the decision to inline it or
not.

-funfolding-keeness-factor is multiplied by any discounts
that apply to a function when deciding to inline. Higher values
increase the keenness to inline a function.

All these parameters either depend on or affect the calculation
of the size of a function. More details about each of these fac-
tors and the calculation of the size of a function are provided
by Peyton Jones and Marlow (2002), or directly in the GHC
source code (namely the CoreUnfold module). The abbreviations
are used in function naming: gshowCT90UT20

Logic , for instance, repre-
sents the function gshow specialized to the Logic datatype, com-
piled with -funfolding-creation-threshold=90 and also
-funfolding-use-threshold=20. In this section, whenever we
use unfolding flags we always use optimization level O2, so this is
not mentioned in the name.

Returning to our gidLogic example, it turns out that compiling
with -O2 -funfolding-use-threshold=60 produces the fol-
lowing code:

gidO2UT60Logic ::Logic→ Logic

gidO2UT60Logic = λ (x ::Logic)→ x .

This means GHC can specialize gidLogic to nothing more than the
identity function, when given enough time and incentive to perform
inlining.

Note, however, that extra inlining is not always desirable. The
total amount of generated core code for this test increased by 72%.
This is because inlining a function that is used more than once
will cause code duplication. A sample binary using this function,
however, increased only 2% in size, which is acceptable. But code
duplication is not the only negative side-effect of inlining. Work
duplication can also occur, if, for instance, we inline x in the
expression x + x. This results in increased running time, which is
something our benchmark can detect (Section 4).

3.2 Generic show
The generic shallow identity function is not a representative test for
a generic programming library. We now turn our attention to gshow
as a more realistic test case. As previously, we start by defining a
specialized version:

gshowLogic ::Logic→ String
gshowLogic = gshow .

Using “standard” optimization flags only, we find that O1 creates
a version of gshow specialized to Logic, but still performing run-
time type comparison and using the generic representation types:

gshowO1
Logic ::Logic→ String

gshowO1
Logic = λ (x ::Logic)→

case (from x) ‘cast‘ (sym (trans . . .)) of w {
L y→ . . .
R y→ . . .
} .

(Note that in core code the case statement has a case binder as an
extra feature. It binds w to the value of the scrutinee, but it is not
used in our examples. The cast is necessary due to core being a
typed language, but these are erased at a later stage.)

Optimization level O2 does not produce a significant improve-
ment of this code. If we start tweaking the unfolding settings, we
need to increase both the creation and the use threshold to notice
an improvement in the generated code:

gshowCT90UT20
Logic ::Logic→ String

gshowCT90UT20
Logic = λ (x ::Logic)→ f @Logic gshowCT90UT20

Logic



(case x of w {(∨) p q→ L@(C ∨ (I× I))
@(C Var (K [Char ])

+ (C Not I + C . . .))
. . .}) .

In gshowCT90UT20
Logic we notice that the type coercions are gone, but

we are still left with a two-step process: first decompose Logic
constructors into their generic representation, and then consume
those (function f , which we omit) to produce the result String.
Note that, in core code, type application is made explicit with the
@ operator (as in value@Type), and there is no syntactic sugar for
infix operators.

By increasing the use threshold further, we achieve a specialized
version which no longer uses any generic representation types. The
code is very similar to that generated for a hand-written variant of
show:

gshowCT90UT30
Logic ::Logic→ String

gshowCT90UT30
Logic = λ (x ::Logic)→ case x of w {

(∨) p q → (++) . . . gshowCT90UT30
Logic p . . . gshowCT90UT30

Logic q . . .

Var v → (++) . . . show v . . .

Not p → (++) . . . gshowCT90UT30
Logic p . . .

Const b→ (++) . . . show b . . .} .

Optimizing generics is easy! With the right amount of tweaking in
the unfolding settings, GHC can generate type-specific functions
from a generic function definition. These specialized functions
contain no generic representation overhead, and are similar to the
code that is generated for hand-written type-specific functions.

Unfortunately, tweaking the unfolding options is a rather drastic
approach, since it will affect all generated code, and not only the
generic functions we want to specialize. We have also tried using
other, more localized techniques to achieve the same effect. GHC
also provides the INLINE pragma4, which serves to annotates a
function that the programmer wants to have inlined. However, this
serves only to reduce the function’s cost for the inlining calculation,
and it proved not to be enough to achieve the same results. Either
the pragma does not reduce the cost enough to trigger inlining, or
other factors override the pragma. SPECIALIZE pragmas are also
not enough for the optimization we want: they achieve the same
specialization as compilation with O1 or O2 does, and hence do not
remove all of the generic overhead.

4. A benchmark suite for generics
To better understand the performance impact of the optimizations
described in Section 3, and to provide a more comprehensive report
on the performance of generic programs, we designed a benchmark
suite of generic programs. It comprises a number of typical and
representative generic functions written on a few different generic
libraries. We ran it with several different optimization flags, as well
as across different compiler versions.

4.1 Benchmark suite design
Benchmarking is, in general, a complex task, and a lazy language
imposes even more challenges on the design of the benchmark.
We designed a benchmark suite which ensures easy repeatability
of tests, calculating the average running time and also the standard
deviation for statistical analysis. It is portable across different op-
erating systems and can easily be ran with different compiler ver-
sions. It supports passing additional flags to the compiler and re-
ports the used flags in the final results. Each test is compiled as an
independent program, which consists of getting the current CPU
time, running the test, getting the updated CPU time and outputting

4 http://www.haskell.org/ghc/docs/latest/html/users_
guide/pragmas.html#inline-noinline-pragma

the difference of the times. The Unix time command performs a
similar task, but unfortunately no equivalent is immediately avail-
able in Microsoft Windows. By including the timing code with the
test (using the portable function System.CPUTime.getCPUtime) we
work around this problem.

To ensure reliability of the benchmark, we use profiling, which
gives us information about which computations most time is being
spent on. For each of the tests, we ensure that at least 50% of
the time is spent on the function we want to benchmark. Profiling
also gives information about the time it takes to run a program,
but we do not use those figures since they are affected by the
profiling overhead. An approach similar to the nofib benchmark
suite (Partain 1993) is not well-suited to our case, as our main point
is not to compare an implementation across different compilers, but
instead to compare different implementations on a single compiler.

A top-level script (also written in Haskell) takes care of compil-
ing all the tests with the same flags, invoking them a given num-
ber of times, parsing and accumulating results as each test finishes,
and calculating and displaying the average running time at the end,
along with some system information.

4.2 Generic functions
We have benchmarked five different generic functions.

eq Equality is a well-known generic function, and its use is nearly
universal. It is a generic consumer, in the sense that the generic
type is an argument. It takes two generic arguments (albeit of
the same type) and it has to traverse them fully to determine
their structural equality.

map Map, defined in Haskell 98 as the fmap method of the Functor
class, applies a function to all elements of a container type.
Not all types can be mapped over: only those of kind ∗ → ∗.
Consequently, not all libraries can express map adequately,
since it requires dealing with higher-kinded types.

show Transforming a value into a String is also a very common
generic function. It is also a consumer, and is present in most
generic programming libraries. It requires constructor informa-
tion, such as name and fixity.

read The inverse of show is read. It is also a generic function, but
typically harder to express than show. It is a producer, in the
sense that the generic type is the result type. It also requires
constructor information.

update There are several types of update functions that can be writ-
ten. The common goal is to transform a value of a datatype
without changing its type. In our benchmark, we choose to
transform all odd Int values by adding one to them, or to
prepend all non-empty String values with a "y". These are
merely representative transformations of what is done in prac-
tice.

4.3 Datatypes
Unlike Rodriguez Yakushev et al. (2008), we do not intend to
evaluate datatype support across different libraries. Therefore we
use only two datatypes.

data Tree a = Bin a (Tree a) (Tree a) | Leaf

The Tree datatype is a simple labeled binary leaf tree. The label
type is a parameter. This allows us to define a map for Tree.

data Logic = Impl Logic Logic | Equiv Logic Logic
| Conj Logic Logic | Disj Logic Logic
| Not Logic | Var String | T | F

The Logic type is very similar to the one we introduced in Sec-
tion 2.1, only with more constructors. The intention is to test

http://www.haskell.org/ghc/docs/latest/html/users_guide/pragmas.html#inline-noinline-pragma
http://www.haskell.org/ghc/docs/latest/html/users_guide/pragmas.html#inline-noinline-pragma


the performance of generic programming libraries on datatypes
with many constructors. Since many libraries represent algebraic
datatypes as a nested sum of products, we suspect this nesting can
cause inefficiency. We also avoid using infix constructors, to sim-
plify the task of generic show and read. From this point on, when-
ever we mention the Logic type we are referring to this updated
variant. The same holds for the Var and Not constructors.

4.4 Generic libraries
We have chosen a few representative, mainstream, and maintained
libraries to benchmark:

emgm Extensible and Modular Generics for the Masses (Hinze
2006; Oliveira et al. 2007) now exists as a mature, large, and
well-maintained library5. Its fundamental characteristic is to
encode datatype representations through a type class.

syb Scrap Your Boilerplate (Lämmel and Peyton Jones 2003,
2004) is a very popular library based on generic combinators
and type-safe cast. It comes with GHC.

regular This is the library we describe in Section 2.

multirec This library was introduced by Rodriguez Yakushev
et al. (2009), and is the first approach able to express mutually
recursive datatypes, making it possible to define folds and zip-
pers on such types. Structurally, it is very similar to regular,
also using type families to represent the generic structure of
datatypes. However, it makes use of a few more advanced con-
cepts to deal with mutual recursion.

We have not benchmarked the following libraries:

alloy Although alloy (Brown and Sampson 2009) has been
developed with performance in mind and would seem like a
natural candidate to benchmark, it is a rather specific solution
to the concrete problem the authors had. We cannot implement
generic read, show, or equality in alloy, so we cannot fairly
compare it to the other libraries in our benchmark.

uniplate The uniplate library (Mitchell and Runciman 2007)
is, according to current Hackage download statistics, the sec-
ond most popular generic programming library (with syb being
first since it comes with GHC). It is also geared towards perfor-
mance, but also provides no way to define generic read, show,
or equality.

ig Instant generics (Chakravarty et al. 2009) is a recent library
which claims to perform as good as hand-written code. Its im-
plementation is not very different from regular, where generic
functions are also not recursive, so we do not expect much dif-
ference in performance between these two libraries.

We have also implemented all the functions in a type-specific
hand-written variant. We benchmark the generic functions’ per-
formance against this hand-written standard. We take optimization
level O1 as the standard, so we plot all the values relative to the
hand-written code optimized at level O1. We use a logarithmic scale
(base 2) and set the x-axis to cross the y-axis at 1. Results where
the performance is better than hand-written code compiled with O1
therefore show as bars below this crossing line.

4.5 Results
We present some results from our benchmark, along with a discus-
sion of some interesting highlights.

5 http://www.cs.uu.nl/wiki/GenericProgramming/EMGM

4.5.1 Optimization flags
We present a series of results comparing the performance of the
generic functions when compiled with different optimization flags.
While we focus on the UT flag in the results presented, we have
also mentioned the existence of the KF and FD flags (Table 1). We
have benchmarked the tweaking of these flags, and have found
that while they also increase performance in certain cases, their
behavior is not better than that of UT, namely in providing better
results or preventing negative performance impact. Therefore, we
show only the results of tweaking UT. The CT flag falls under a
different category, since it affects the insertion of functions to inline
into the header files (to allow for cross-module inlining). We have
used different levels of CT in all our tests with KF and FD, just like
the ones we present for UT.

Equality In Figure 1 we show the performance of the equality
function across different libraries, datatypes and compilation flags.
From this graph, it is clear that having no optimization (level
O0) is much worse than O1. From this point on we will omit the
non-optimized figures (recall that all values are plotted relative
to the hand-written version optimized at level O1, so the non-
optimized figures are not necessary). Inlining thresholds as high
as O1CT1000UT180 seem to have no added benefit, so we will also
omit them.

Overall, syb performs poorly when compared to the other ap-
proaches. Standard optimization level O1 gives a performance 10–
15 times worse than hand-written depending on the datatype. Ag-
gressive inlining reduces this figure to 7–12 times worse, which
is still an enormous overhead. This is probably because of syb’s
complex implementation for functions which traverse two generic
arguments.

On the other hand, emgm performs almost as fast as hand-written
for eqTree even when compiled with O1 only. For eqLogic, standard
compilation gives a performance roughly 2 times slower than hand-
written, but forcing inlining brings this down to 1 again. This
is a remarkable improvement, and it shows that the benefits of
stimulating inlining are not limited to regular, as both the results
of syb and emgm show. For this test, multirec and regular have
the least benefits from inlining, taking between 1.5 and 2.5 times
longer than hand-written code.

It is interesting that the results for eqLogic seem, in general,
better than those for eqTree. This is caused by the test structure:
while for eqTree we are comparing trees that either are equal or only
differ at a deep leaf, for eqLogic we also have some comparisons
which return False rather quickly. This means less time is spent
in the generic function, and therefore there is less overhead from
generics.

Map In Figure 2 we show the performance of generic map.
We only show the emgm and syb libraries, since regular and
multirec cannot adequately express a map on the arguments of
type containers. The syb test is not implemented as a truly generic
map; instead we use the everywhere combinator for traversals. We
only show the Tree datatype, since Logic is not a type container.

It is clear from this test that emgm’s implementation of generic
map is very well optimized, generating code that has an overhead of
only 7% with standard O1. On the other hand, the implementation
using syb’s type-safe cast takes approximately 12 times longer to
run, and shows no improvement with increased inlining thresholds.

Show We explored the potential for optimization of generic show
in Section 3.2. Here we confirm those results by benchmarking.
The results are in Figure 3. For this test, emgm and regular seem to
have the most dramatic improvements. With O1CT450UT60, emgm
has a penalty of only 10% over the standard hand-written version,
while regular performs even slightly faster. In Section 3.2 we

http://www.cs.uu.nl/wiki/GenericProgramming/EMGM


Figure 1. Performance of generic equality.

Figure 2. Performance of generic map.

have seen that the optimizations lead to generation of code that
is comparable to that generated for a hand-written version. The
benchmark confirms this fact. Both syb and multirec do not seem
to benefit as strongly from the inlining, although O1CT450UT60 still
provides the best results. This also seems to hint at the fact that
the added complexity of multirec (when compared to regular)
complicates optimization. It is also interesting to note that the Logic
datatype does not prove harder to handle for the generic libraries,
even when not using a balanced sum-of-products view (Holder-
mans et al. 2006).

Read In Figure 4 we show the results of benchmarking generic
read. Unlike generic show, reading does not seem to benefit much
from inlining. Additionally, all libraries perform significantly
worse than the hand-written version, with emgm, multirec, and
regular all performing roughly 8 times slower and syb 20, for
the Tree datatype.

The tests for the Logic datatype give similar performance results
for emgm and syb. However, both regular and multirec were un-
able to handle this test, consuming too much memory and grinding
the machine to a halt. We assume this to be due to some ineffi-
ciency while parsing the alternatives in the sum case. This could be
solved by adapting generic read on these libraries to behave more
like emgm’s.

Update Our last test is generic update (Figure 5). We notice
several important figures:

• Optimization levels O1UT60 and O1CT450UT60 again impact
performance considerably (for syb on the Logic datatype).
Conversely, they produce the best results for regular (on both
datatypes), which are as good as hand-written code.
• While emgm performs clearly worse than hand-written code for

the Logic datatype when compiled with O1 (5 times worse), the
overhead seems to be completely removed by compiling with
O1CT450UT60. The same does not hold for the Tree datatype,
where both O1 and O1CT450UT60 give a similar penalty of 31%.
• From a user’s perspective, while the implementation of the

generic traversals in emgm and syb is very similar (in terms of
the generic function everywhere), syb has much worse perfor-
mance. This is probably due to the rank-2 polymorphism in the
syb version:

everywhereemgm :: (Rep (Everywhere a) b)
⇒ (a→ a)→ b→ b

everywheresyb :: (Data a)
⇒ (∀a. Data a⇒ a→ a)→ a→ a .

The syb version is more flexible, but this comes at the extra
price of loss of optimization opportunities.
• Again, multirec performs worse than regular, and does not

seem to be affected by the higher thresholds for inlining. In
the test for Logic, multirec even performs slower than syb,
making this the only test where syb is not the slowest library.

4.5.2 Compiler version
So far we have seen the impact of tweaking the inlining flags in
the compiler. However, this technique does not promise to be very
portable across different compiler versions, since when the inlining



Figure 3. Performance of generic show.

Figure 4. Performance of generic read.

mechanism changes the effect of the thresholds will also change.
To assess the effectiveness of our method with different versions of
the compiler, we have ran our benchmark with 4 different compiler
versions: 6.8.3 (final release of the 6.8 series), 6.10.4 (the latest sta-
ble released version at the time of writing and also the version used
for all the results shown so far), 6.12-rc1 (the first release candi-
date of the upcoming 6.12 series), and 6.13-20091031 (the HEAD
version at the time of writing). The results using HEAD differ sub-
stantially from 6.12-rc1 because HEAD includes a significant patch
to the behavior of the inliner and the INLINE pragma, which means
it is a good test for the durability of our tweaks.

We summarize the results in Figure 6. This graph illustrates the
average performance of all tests, each still relative to the hand-
written variant compiled with O1. We do not show the labels at the
y-axis since they are not significant, but the axis is linear (and not
logarithmic as in the previous graphs). For completeness we again
include the O0 and O1CT1000UT180 figures. As we suspected, the
values we have chosen for the inlining flags are rather specific

to version 6.10.4. Interestingly, the earlier 6.8.3 version seems to
perform slightly better than 6.10.4. The upcoming 6.12 version
shows slightly worse improvements than 6.10.4, but we think this
is caused by a better performance of O1 in 6.12, since in the figures
for the absolute running time (not shown here due to space con-
straints) 6.12 actually performs better than 6.10.4. The more dra-
matic results come from the HEAD version, where the optimiza-
tions always have less impact. The running times are also consis-
tently longer, but it should be noted that this an unstable version of
the compiler, prone to change significantly before any release.

In any case, it should be noted that not many conclusions can
be taken from the averages, since we have seen that blindly in-
creasing inlining can negatively impact performance. It is insight-
ful to notice that there is an overall gain in moving from O1 to
O1CT450UT60, for instance, but this does not mean that the thresh-
olds for inlining should always be raised.

4.6 Analysis
In this section we discuss the relevance of our results and compare
them to other benchmarks.

From the results of our benchmark, it is important to extract
some general advice to the writer and user of generic programming
libraries concerned with performance. It is safe to say that, as far
as performance is concerned, syb and multirec are best avoided.
The advantages of multirec, such as a zipper operating on mu-
tually recursive datatypes, are not found in any other library, but
syb is many times used as a default, since it is readily available
and comes with GHC-specific support. However, given the current
evolution of Haskell libraries into the universal Hackage package
repository6, and the existence of maintained, well-documented, and
easy-to-use libraries such as emgm and regular, there are less rea-
sons to default to syb.

We were somewhat surprised by the results of multirec in the
benchmark. Being a library very similar to regular in terms of im-
plementation, we expected similar performance results. However,
not only multirec performs worse than regular, it also seems to
benefit much less from increased inlining thresholds. This seems to
indicate that explicit type witnesses and type equality constraints,

6 http://hackage.haskell.org

http://hackage.haskell.org


Figure 5. Performance of generic update.

Figure 6. Performance across different versions of the compiler.

which are frequent in multirec, prevent the elimination of the
overhead from the generic code.

Unlike the other libraries which we benchmark, syb does not
use a sum-of-products view on data, but instead the spine view
(Hinze et al. 2006). Additionally, generic functions are not de-
fined by induction on the representation types, but by use of prim-
itive generic combinators, such as gfoldl and gunfold. These func-
tions use rank-2 polymorphism and rely on run-time type-safe cast.
These features set syb apart from the other libraries, and are most
likely the cause for syb’s poor performance. Further research is
necessary to improve the performance of syb, but we suspect that
techniques other than inlining will be necessary for that.

As for users of emgm and regular, it is important to compile the
code with the right flags. The library code should be compiled with
high CT, so as to permit inlining of the generic functions at the use
site. User code should be compiled with high UT, to force inlining to
occur and, consequently, elimination of generic overhead through
GHC’s standard optimizations. We cannot uniquely determine the

a single value to set these parameters to, since this will depend on
the size of the functions. For now, the only way to determine these
values is by inspection of the generated code or benchmarking.

We know of two other benchmarks of generic programs. Ro-
driguez Yakushev (2009, Chapter 4) benchmarks emgm, syb and
multirec (among others) against hand-written code. From the
three functions benchmarked, one is also in our benchmark (generic
equality). The relative ordering of the performance of each library
matches our benchmark (with syb being the slowest and emgm the
fastest), but the results are significantly different. However, we have
seen (Figure 1) that the structure of the datatype being compared
affects the performance, so this is not surprising.

Brown and Sampson (2009) developed a specialized library tai-
lored for good performance, alloy. The techniques used for good
performance are, however, very specific and do not readily trans-
late to other approaches. In fact, alloy cannot even express the
generic equality function, being focused mostly on single parame-
ter traversals. In their benchmark, alloy has a mixed performance
when compared to emgm, varying between a quarter slower to a
third faster, depending on the traversal. An important observation
of Brown and Sampson is that emgm and syb should always use a
specialized case for traversal of Strings. Treating them as mere lists
of characters can dramatically impact performance.

We have seen that increased thresholds for inlining can nega-
tively impact performance. Other known side effects are code bloat
and increased compilation times. We measured the average increase
of binary size when using O1CT450UT60, with O1 as a reference.
We found an average increase of 1.6%, with a standard deviation
of 0.7%. Compilation time increased 12%. We consider this accept-
able for the gains that are achieved.

5. Conclusion and future work
We have presented a benchmark of generic programs, highlighting
the importance of inlining for performance of generics. Our bench-
mark not only reveals which libraries are more or less fast, but also
which compilation flags can dramatically affect performance. Al-
though our benchmark answered many questions, it probably raised
even more new questions. Tweaking the inlining flags is certainly
not the most convenient way of optimizing generics, and it requires
extra work for both library writers and users. Additionally, cur-
rently its effects cannot be restricted to single functions by means



other than isolating the function in a separate module and separate
compilation. This is rather undesirable. Ideally, library writers flag
the generic functions which are to be inlined, while users get the
best optimization without having to worry about setting flags with
long and complicated names. It remains to see why the INLINE
pragma is not sufficient to achieve this behavior, and which alter-
natives could be implemented. An alternative is to use rewrite rules
to encode inlining. Rules such as

{-# RULES "fromLogic" ∀x.
from x = case x of

(p ∨ q)→ L (C ((I p)× (I q)))
(Var x) → R (L (C (K x)))
(Not p)→ R (R (C (I p))) #-}

could be used for that purpose. We plan to investigate if they could
achieve similar performance to that achieved by tweaking inlining
flags. Naturally, such rules would have to be automatically gen-
erated to remain unobtrusive. On the other hand, the behavior of
the inliner and the INLINE pragma has changed substantially in
the HEAD version of the compiler, including the introduction of a
CONLIKE modifier which increases the occasions where inlining is
performed. These changes will not be present in the released ver-
sion until 6.14, but we plan to experiment with the HEAD version
to see if they provide the localized control we need. Hopefully we
can both simplify the process of optimizing generic functions and
obtain the same performance improvements as with 6.10.4.

While regular and emgm have shown promising results with
increased inlining for most generic functions, it remains to see
how to optimize generic read. Additionally, other generic producers
might also prove problematic to optimize. For multirec, we have
to investigate which of its advanced techniques are preventing opti-
mization through inlining, and how to circumvent that. For syb, the
slowest and most popular generic programming library in Haskell,
we expect an entire new approach to optimization is necessary.

In any case, it is now clear that generic programs do not have
to be slow, and their optimization up to hand-written code perfor-
mance not only is possible but can also be done with standard op-
timization techniques for functional programs. This opens the door
for a future where generic programs will not only be general, ele-
gant, and concise but also as efficient as type-specific code.

A. Configuration of the test machines
The benchmark figures were obtained from a Linux machine run-
ning on kernel version 2.6.28.10 on an Intel Core 2 Duo 2.13Ghz
with 4GB of RAM. The compiler used was GHC version 6.10.4,
the latest released stable version at the time of writing. The results
of Section 4.5.2 were obtained from a virtualized Linux machine
running on kernel version 2.6.24.22 on an Intel Core 2 Duo 3Ghz
with 768MB of RAM. All raw data used for this paper is available
together with the benchmark suite at https://subversion.cs.
uu.nl/repos/staff.jpm.public/benchmark/tags/0.1/.
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Yakushev. Libraries for generic programming in Haskell. In AFP’08,
volume 5832 of LNCS, pages 165–229. Springer, 2009.
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Jeuring. Generic programming with fixed points for mutually recursive
datatypes. In ICFP’09, pages 233–244. ACM, 2009.

Tom Schrijvers, Simon Peyton Jones, Manuel M. T. Chakravarty, and Mar-
tin Sulzmann. Type checking with open type functions. In ICFP’08,
pages 51–62. ACM, 2008.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for
Haskell. In Haskell’02, pages 1–16. ACM, 2002.

https://subversion.cs.uu.nl/repos/staff.jpm.public/benchmark/tags/0.1/
https://subversion.cs.uu.nl/repos/staff.jpm.public/benchmark/tags/0.1/

	Introduction
	The regular library
	Generic representation
	Generic functions

	Optimizing generics through inlining
	Generic identity
	Generic show

	A benchmark suite for generics
	Benchmark suite design
	Generic functions
	Datatypes
	Generic libraries
	Results
	Optimization flags
	Compiler version

	Analysis

	Conclusion and future work
	Configuration of the test machines

