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Abstract. It is known that datatype-generic programs often run slower than type-
specific variants, and this factor can prevent adoption of generic programming
altogether. There can be multiple reasons for the performance penalty, but often
it is caused by conversions to and from representation types that do not get elimi-
nated during compilation. However, it is also known that generic functions can be
specialised to specific datatypes, removing any overhead from the use of generic
programming. In this paper, we investigate compilation techniques to specialise
generic functions and remove the performance overhead of generic programs in
Haskell. We pick a representative generic programming library and look at the
generated code for a number of example generic functions. After understanding
the necessary compiler optimisations for producing efficient generic code, we
benchmark the runtime of our generic functions against handwritten variants, and
conclude that the overhead can indeed be removed automatically by the compiler.

1 Introduction

Datatype-generic programming is a form of abstraction that allows defining functions
that operate on every suitable datatype. Generic programs operate on the general struc-
ture of datatypes, therefore remaining agnostic of the individual detail of each datatype.
Examples of behaviour that can be defined generically are (de)serialisation, equality
testing, and traversing data. It is convenient to define such functions generically be-
cause less code has to be written, and this code has to be adapted less often. However,
generic programs operate on the underlying structure of datatypes, and not on datatypes
themselves directly. This indirection often causes a runtime penalty, as conversions to
and from the generic representation are not always optimised away.

The performance of generic programs has been analysed before. Rodriguez Yaku-
shev et al. (2008) present a detailed comparison of nine libraries for generic program-
ming in Haskell, with a brief performance analysis. This analysis indicates that the use
of a generic approach could result in an increase of the running time by a factor of as
much as 80. Van Noort et al. (2010) also report severe performance degradation when
comparing a generic approach to a similar but type-specific variant. While this is typ-
ically not a problem for smaller examples, it can severely impair adoption of generic
programming in larger contexts. This problem is particularly relevant because generic
programming techniques are especially applicable to large applications where perfor-
mance is crucial, such as structure editors or compilers.

? This work has been funded by EPSRC grant number EP/J010995/1. We thank the anonymous
reviewers for the helpful feedback.
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To understand the source of performance degradation when using a generic function
from a particular generic programming library, we have to analyse the implementation
of the library. The fundamental idea behind generic programming is to represent all
datatypes by a small set of representation types. Equipped with conversion functions
between user datatypes and their representation, we can define functions on the repre-
sentation types, which are then applicable to all user types via the conversion functions.
While these conversion functions are typically trivial and can be automatically gener-
ated, the overhead they impose is not automatically removed. In general, conversions
to and from the generic representations are not eliminated by compilation, and are per-
formed at run-time. These conversions are the main source of inefficiency for generic
programming libraries. In the earlier implementations of generic programming as code
generators or preprocessors (Hinze et al. 2007), optimisations (such as automatic gener-
ation of type-specialised variants of generic functions) could be implemented externally.
Modern implementations of generic programming are libraries, removing the need for
cumbersome work on parsing and type checking, for instance. With the switch to library
approaches, however, all optimisations have to be performed by the compiler.

The Glasgow Haskell Compiler (GHC, the main Haskell compiler) compiles a pro-
gram by first converting the input into a core language and then transforming the core
code into more optimised versions, in a series of sequential passes. While it performs a
wide range of optimisations, with the default settings it seems to be unable to remove
the overhead incurred by using generic representations. Therefore generic libraries per-
form worse than handwritten type-specific counterparts. Alimarine and Smetsers (2004,
2005) show that in many cases it is possible to remove all overhead by performing a
specific form of symbolic evaluation in the Clean compiler. In fact, their approach is
not restricted to optimising generics, and GHC performs symbolic evaluation as part
of its optimisations. Our goal is to convince GHC to optimise generic functions so as
to achieve the same performance as handwritten code, without requiring any additional
manipulation of the compiler internals.

We have investigated this problem before (Magalhães et al. 2010), and concluded
that tweaking GHC optimisation flags can achieve significant speedups. The problem
with using compiler flags is that these apply to the entire program being compiled, and
while certain flags might have a good effect on generic functions, they might adversely
affect performance (or code size) of other parts of the program. In this paper we take a
more fine-grained approach to the problem, looking at how to localise our performance
annotations to the generic code only, by means of rewrite rules and function pragmas.1

In this way we can improve the performance of generic functions with minimal impact
on the rest of the program.

We continue this paper by defining two representative generic functions which we
focus our optimisation efforts on (Section 2). We then see how these functions can be
optimised manually (Section 3), and transfer the necessary optimisation techniques to
the compiler (Section 4). We confirm that our optimisations result in better runtime per-
formance of generic programs in a benchmark in Section 5, and conclude in Section 6.

1 http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html

http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html
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2 Example generic functions

For analysing the performance of generic programs we choose the generic-deriving
library, now integrated in GHC. Due to space considerations we can only provide the
(simplified) interface of this library:

data U1 ρ = U1
data K1 α ρ = K1 α

data (α :+: β ) ρ = L1 (α ρ) | R1 (β ρ)
data (α :×: β ) ρ = α ρ :×: β ρ

class Generic α where
type Rep α ::?→ ?
to :: Rep α ρ → α

from :: α → Rep α ρ

U1 encodes constructors without arguments. K1 α ρ encodes recursion into some data-
type α . Finally, (:+:) encodes choice between constructors, and (:×:) is used for con-
structors with multiple arguments. The parameter ρ , present in all the representation
types, is not used by our example generic functions and can be safely ignored. The
type class Generic encodes the conversion between a datatype α and its representation
Rep α , witnessed by the conversion functions to and from. The reader is referred to
Magalhães (2012) for a full description of generic-deriving.

We present two generic functions that will be the focus of our attention: equality
and enumeration. These are chosen as representative examples; equality is a generic
consumer, taking generic values as input, and enumeration is a generic producer, since
it generates generic values. Equality is a relatively simple, standard example, while
enumeration requires the use of auxiliary (non-generic) functions.

2.1 Generic equality

A notion of structural equality can easily be defined as a generic function. We first
define a class for equality on the representation types:

class GEqRep φ where
geqRep :: φ α → φ α → Bool

We can now give instances for each of the representation types:

instance GEqRep U1 where
geqRep = True

instance (GEqRep α,GEqRep β )⇒ GEqRep (α :+: β ) where
geqRep (L1 x) (L1 y) = geqRep x y
geqRep (R1 x) (R1 y) = geqRep x y
geqRep = False

instance (GEqRep α,GEqRep β )⇒ GEqRep (α :×: β ) where
geqRep (x1 :×: y1) (x2 :×: y2) = geqRep x1 x2 ∧ geqRep y1 y2

Units are trivially equal. For sums we continue the comparison recursively if both values
are either on the left or on the right, and return False otherwise. Products are equal if
both components are equal.

For recursive occurrences we fall back to a user-facing GEq class:

instance (GEq γ)⇒ GEqRep (K1 γ) where
geqRep (K1 a) (K1 b) = geq a b
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This user-facing class is similar to GEqRep, but is used for user datatypes, and
comes with a generic default method:

class GEq α where
geq :: α → α → Bool
default geq :: (Generic α,GEqRep (Rep α))⇒ α → α → Bool
geq x y = geqRep (from x) (from y)

This class is similar to the Prelude Eq class, but we have left out inequality for simplic-
ity. The generic default simply calls from on the arguments, and then proceeds using the
generic equality function geqRep.

Adhoc instances for base types can reuse the Prelude implementation:

instance GEq Int where
geq = (≡)

User datatypes, such as lists, can use the generic default:

instance (GEq α)⇒ GEq [α ]

2.2 Generic enumeration

We now define a function that enumerates all possible values of a datatype. For infinite
datatypes we have to make sure that every possible value will eventually be produced.
For instance, if we are enumerating integers, we should not first enumerate all positive
numbers, and then the negatives. Instead, we should interleave positive and negative
numbers.

We enumerate values by listing them with the standard list type. There is only one
unit to enumerate, and for datatype occurrences we refer to a user-facing GEnum class:

class GEnumRep φ where
genumRep :: [φ α ]

instance GEnumRep U1 where
genumRep = [U1 ]

instance (GEnum α)⇒ GEnumRep (K1 α) where
genumRep = map K1 genum

The more interesting cases are those for sums and products. For sums we enumerate
both alternatives, but interleave them with a (|||) operator:

instance (GEnumRep α,GEnumRep β )⇒ GEnumRep (α :+: β ) where
genumRep = map L1 genumRep |||map R1 genumRep

infixr 5 |||
(|||) :: [α ]→ [α ]→ [α ]

For products we generate all possible combinations of the two arguments, and di-
agonalise the result matrix, ensuring that all elements from each sublist will eventually
be included, even if the lists are infinite:
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instance (GEnumRep α,GEnumRep β )⇒ GEnumRep (α :×: β ) where
genumRep = diag (map (λx→ map (λy→ x :×: y) genumRep) genumRep)

diag :: [ [α ] ]→ [α ]

We omit the implementation details of (|||) and diag as they are not important; it only
matters that we have some form of fair interleaving and diagonalisation operations. The
presence of (|||) and diag throughout the generic function definition makes enumera-
tion more complicated than equality, since equality does not make use of any auxiliary
functions. We will see in Section 4.3 how this complicates the specialisation process.
Note also that we do not use the more natural list comprehension syntax for defining
the product instance, again to simplify the analysis of the optimisation process.

Finally, we define the user-facing class, with a default implementation:

class GEnum α where
genum :: [α ]

default genum :: (Generic α,GEnumRep (Rep α))⇒ [α ]
genum = map to genumRep

3 Specialisation, by hand

We now focus on the problem of specialisation of generic functions. By specialisation
we mean removing the use of generic conversion functions and representation types,
replacing them by constructors of the original datatype. To convince ourselves that this
task is possible, we first develop a hand-written derivation of specialisation by equa-
tional reasoning. For simplicity we ignore implementation mechanisms such as the use
of type classes and type families, and focus first on a very simple datatype encoding
natural numbers:

data Nat = Ze | Su Nat

We give the representation of naturals with standard Haskell datatypes using a type
synonym:

type RepNat = Either () Nat

We use a shallow representation (with Nat at the leaves, and not RepNat), remaining
faithful with generic-deriving. We also need a way to convert between RepNat and
Nat:

toNat :: RepNat→ Nat
toNat n = case n of {Left ()→ Ze; Right n→ Su n; }
fromNat :: Nat→ RepNat
fromNat n = case n of {Ze→ Left (); Su n→ Right n; }

We now analyse the specialisation of generic equality and enumeration on this datatype.
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3.1 Generic equality

We consider two versions of an equality function. The first is a handwritten, type-
specific definition of equality for Nat:

eqNat :: Nat→ Nat→ Bool
eqNat m n = case (m , n) of

(Ze , Ze )→ True
(Su m , Su n)→ eqNat m n
( , )→ False

The second is generic equality on Nat through RepNat, for which we need equality
on units and sums:

eqU :: ()→ ()→ Bool
eqU x y = case (x , y) of {(() , ())→ True; }
eqPlus :: (α → α → Bool)→ (β → β → Bool)→ Either α β → Either α β → Bool
eqPlus ea eb a b = case (a , b) of

(Left x , Left y)→ ea x y
(Right x , Right y)→ eb x y
( , )→ False

Now we can define equality for RepNat, and generic equality for Nat through conver-
sion to RepNat:

eqRepNat :: RepNat→ RepNat→ Bool
eqRepNat = eqPlus eqU eqNatFromRep
eqNatFromRep :: Nat→ Nat→ Bool
eqNatFromRep m n = eqRepNat (fromNat m) (fromNat n)

Our goal now is to show that eqNatFromRep is equivalent to eqNat. In the following
derivation, we start with the definition of eqNatFromRep, and end with the definition of
eqNat:

eqRepNat (fromNat m) (fromNat n)

≡〈 inline eqRepNat and eqPlus 〉

case (fromNat m , fromNat n) of
(Left x , Left y)→ eqU x y
(Right x , Right y)→ eqNatFromRep x y

→ False

≡〈 inline fromNat 〉

case ( case m of {Ze→ Left ();Su x1→ Right x1}
, case n of {Ze→ Left ();Su x2→ Right x2}) of

(Left x , Left y)→ eqU x y
(Right x , Right y)→ eqNatFromRep x y

→ False
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≡〈 case-of-case transform 〉

case (m , n) of
(Ze , Ze )→ eqU () ()
(Su x1 , Su x2)→ eqNatFromRep x1 x2

→ False

≡〈 inline eqU and case-of-constant 〉

case (m , n) of
(Ze , Ze )→ True
(Su x1 , Su x2)→ eqNatFromRep x1 x2

→ False

This shows that the generic implementation is equivalent to the type-specific variant,
and that it can be optimised to remove all conversions. We discuss the techniques used
in this derivation in more detail in Section 4.1, after showing the optimisation of generic
enumeration.

3.2 Generic enumeration

A type-specific enumeration function for Nat follows:

enumNat :: [Nat ]
enumNat = [Ze] |||map Su enumNat

To get an enumeration for RepNat we first need to know how to enumerate units
and sums:

enumU :: [ () ]
enumU = [()]

enumPlus :: [α ]→ [β ]→ [Either α β ]
enumPlus ea eb = map Left ea |||map Right eb

Now we can define an enumeration for RepNat:

enumRepNat :: [RepNat ]
enumRepNat = enumPlus enumU enumNatFromRep

With the conversion function toNat, we can use enumRepNat to get a generic enumera-
tion function for Nat:

enumNatFromRep :: [Nat ]
enumNatFromRep = map toNat enumRepNat

We now show that enumNatFromRep and enumNat are equivalent:2

2 Given that these are recursive structures, we have to be careful to preserve correctness over the
whole proof, even if each step is clearly correct (Sands 1998). None of the steps in the proof
changes the productivity of the entire expression, so we are confident of its overall correctness.
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map toNat enumRepNat

≡〈 inline enumRepNat and enumPlus 〉

map toNat (map Left enumU |||map Right enumNatFromRep)

≡〈 inline enumU and map 〉

map toNat ([Left ()] |||map Right enumNatFromRep)

≡〈 free theorem (|||) :∀f a b.map f (a |||b) = map f a |||map f b 〉

map toNat [Left ()] |||map toNat (map Right enumNatFromRep)

≡〈 inline map and toNat, case-of-constant 〉

[Ze ] |||map toNat (map Right enumNatFromRep)

≡〈 functor composition law: ∀f g l.map f (map g l) = map (f ◦g) l 〉

[Ze ] |||map (toNat ◦Right) enumNatFromRep

≡〈 inline toNat and case-of-constant 〉

[Ze ] |||map Su enumNatFromRep

Like equality, generic enumeration can also be specialised to a type-specific variant
without any overhead.

4 Specialisation, by the compiler

After the manual specialisation of generic functions, let us now analyse how to convince
the compiler to automatically perform the specialisation.

4.1 Optimisation techniques

Our calculations in Section 3 rely on a number of lemmas and techniques that the com-
piler will have to use. We review them here:

Inlining Inlining replaces a function call with its definition. It is a crucial optimisation
technique because it can expose other optimisations. However, inlining causes code
duplication, and care has to be taken to avoid non-termination through infinite inlining.

GHC uses a number of heuristics to decide when to inline a function or not, and
loop breakers for preventing infinite inlining (Peyton Jones and Marlow 2002). The
programmer can provide explicit inlining annotations with the INLINE and NOINLINE
pragmas, of the form:

{−# INLINE [n ] f #−}
In this pragma, f is the function to be inlined, and n is a phase number. GHC performs a
number of optimisation phases on a program, numbered in decreasing order until zero.
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Setting n to 1, for instance, means “be keen to inline f in phase 1 and after”. For a
NOINLINE pragma, this means “do not inline f in phase 1 or after”. The phase can be
left out, in which case the pragma applies to all phases.3

Application of free theorems and functor laws Free theorems (Wadler 1989) are the-
orems that arise from the type of a polymorphic function, regardless of the function’s
definition. Each polymorphic function is associated with a free theorem, and functions
with the same type share the same theorem. The functor laws arise from the categorical
nature of functors. Every Functor instance in Haskell should obey the functor laws.

GHC does not compute and use the free theorem of each polymorphic function,
in particular because it may not be clear which direction of the theorem is useful for
optimisation purposes. However, we can add special optimisation rules to GHC via a
RULES pragma (Peyton Jones et al. 2001). For instance, the rewrite rule corresponding
to the free theorem of (|||) follows:

{−# RULES "ft/|||" ∀f a b. map f (a |||b) = map f a |||map f b #−}
This pragma introduces a rule named “ft/|||” telling GHC to replace occurrences of the
application map f (a |||b) with map f a |||map f b. GHC does not perform any confluence
checking on rewrite rules, so the programmer should ensure confluence or GHC might
loop during compilation.

Optimisation of case statements Case statements drive evaluation in GHC’s core lan-
guage, and give rise to many possible optimisations. Peyton Jones and Santos (1998)
provide a detailed account of these; in our derivation in Section 3.2 we used a “case of
constant” rule to optimise a statement of the form:

case (Left ()) of {Left ()→ Ze; Right n→ Su n; }
Since we know what we are case-analysing, we can replace this case statement by the
much simpler expression Ze. Similarly, in Section 3.1 we used a case-of-case transform
to eliminate an inner case statement. Consider an expression of the form:

case (case x of {p1→ e2; }) of {p2→ e3; }
Here, p1 and p2 are patterns, e2 and e3 are expressions, and e2 matches p2. Taking care
to avoid variable capture, we can often simplify this to:

case x of {p1→ e3; }
This rule naturally generalises to case statements with multiple branches.

4.2 Generic equality

We have seen that we have a good number of tools at our disposal for directing the
optimisation process in GHC: inline pragmas, rewrite rules, phase distinction, and all
the standard optimisations for the functional core language. We will now annotate our
generic functions and evaluate the quality of the core code generated by GHC.

3 See the GHC User’s Guide for more details: http://www.haskell.org/ghc/docs/7.4.
1/html/users_guide/pragmas.html.

http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/pragmas.html
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We start by defining a Generic instance for the Nat type:

instance Generic Nat where
type Rep Nat = U1 :+: K1 Nat
{−# INLINE [1 ] to #−}
to (L1 U1) = Ze
to (R1 (K1 n)) = Su n
{−# INLINE [1 ] from #−}
from Ze = L1 U1
from (Su n) = R1 (K1 n)

We give inline pragmas for to and from to guarantee that these functions will be inlined.
However, we ask the inliner to only inline them on phase 1 and after; this is to ensure
that we first inline the generic function definitions, simplify those, and then inline the
conversion functions and simplify again.

We can now provide a generic definition of equality for Nat:

instance GEq Nat

Compiling this code with the standard optimisation flag -O gives us the following
core code:

$GEqNatgeq :: Nat→ Nat→ Bool
$GEqNatgeq = λ (x :: Nat) (y :: Nat)→

case x of
Ze → case y of {Ze→ True; Su m→ False; }
Su m→ case y of {Ze→ False;Su n → $GEqNatgeq m n; }

The core language is a small, explicitly typed language in the style of System F (Yorgey
et al. 2012). The function $GEqNatgeq is prefixed with a $ because it was generated by
the compiler, representing the geq method of the GEq instance for Nat. We can see that
the generic representation was completely removed.

The same happens for lists, as evidenced by the generated core code:

$GEq[]geq ::∀α.GEq α ⇒ [α ]→ [α ]→ Bool
$GEq[]geq = λα (eqA :: GEq α) (l1 :: [α ]) (l2 :: [α ])→

case l1 of
[] → case l2 of { []→ True;(h : t)→ False; }
(h1 : t1)→ case l2 of

[] → False
(h2 : t2)→ case eqA h1 h2 of

False→ False
True → $GEq[]geq α eqA t1 t2

Note that type abstraction and application is explicit in core. There is syntax to distin-
guish type and value application and abstraction from each other, but we suppress the
distinction since it is clear from the use of Greek letters for type variables. Note also that
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constraints (to the left of the⇒ arrow) become just ordinary parameters, so $GEq[]geq

takes a function to compute equality on the list elements, eqA.4

Perhaps surprisingly, GHC performs all the required steps of Section 3.1 with-
out requiring any annotations to the generic function itself. In general, however, we
found that it is sensible to provide INLINE pragmas for each instance of the represen-
tation datatypes when defining a generic function. In the case of geqRep, the methods
are small, so GHC inlines them eagerly. For more complicated generic functions, the
methods may become larger, and GHC will avoid inlining them. Supplying an INLINE
pragma tells GHC to inline the methods anyway.

4.3 Generic enumeration

Generic consumers, such as equality, are, in our experience, more easily optimised by
GHC. A generic producer such as enumeration, in particular, is challenging because it
requires map fusion, and lifting auxiliary functions through maps using free theorems.
As such, we encounter some difficulties while optimising enumeration. We start by
looking at the natural numbers:

instance GEnum Nat where
genum = map to genumRep

Note that instead of using the default definition we directly inline its definition; this is
to circumvent a bug in the current implementation of defaults that prevents later rewrite
rules from applying. GHC then generates the following code:

$x2 :: [U1 :+: K1 Nat ]
$x2 = map $x4 $GEnumNatgenum

$x1 :: [U1 :+: K1 Nat ]
$x1 = $x3 |||$x2

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = map to $x1

We omit the definitions of $x3 and $x4 for brevity. To make progress we need to tell
GHC to move the map to expression in $GEnumNatgenum through the (|||) operator. We
use a rewrite rule for this:

{−# RULES "ft/|||" ∀f a b. map f (a |||b) = map f a |||map f b #−}
With this rule in place, GHC generates the following code:

$x2 :: [U1 :+: K1 Nat ]
$x2 = map $x4 $GEnumNatgenum

$x1 :: [Nat ]
$x1 = map to $x2

4 The type of eqA is GEq α , but we use it as if it had type α→ α→ Bool. In the generated core
there is also a coercion around the use of eqA to transform the class type into a function, but
we elide these details as they are not relevant to the optimisation itself.
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$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x3 |||$x1

We now see that the $x1 term is map applied to the result of a map. The way map is
optimised in GHC (by conversion to build/foldr form) interferes with our "ft/|||"
rewrite rule, and map fusion is not happening. We can remedy this with an explicit map
fusion rewrite rule:

{−# RULES "map/map" ∀f g l. map f (map g l) = map (f ◦g) l #−}
This rule results in much improved generated code:

$x3 :: [U1 :+: K1 Nat ]
$x3 = $x4 : []
$x2 :: [Nat ]
$x2 = map to $x3

$x1 :: [Nat ]
$x1 = map Su $GEnumNatgenum

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x2 |||$x1

The only thing we are missing now is to optimise $x3; note that its type is [U1 :+:
K1 Nat ], and not [Nat ]. For this we simply need to tell GHC to eagerly map a function
over a list with a single element:

{−# RULES "map/singleton" ∀f x. map f (x : []) = (f x) : [] #−}
With this, GHC can finally generate the fully specialised enumeration function on Nat:

$x2 :: [Nat ]
$x2 = Ze : []
$x1 :: [Nat ]
$x1 = map Su $GEnumNatgenum

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x2 |||$x1

Compelling GHC to optimise generic enumeration for lists proves to be more diffi-
cult.5 Since lists use products, we need to introduce a rewrite rule for the free theorem
of diag, allowing map to be pushed inside diag:

{−# RULES "ft/diag" ∀f l. map f (diag l) = diag (map (map f ) l) #−}
With this rule, and the extra optimisation flag -fno-full-laziness to maximise the
chances for rewrite rules to apply, we get the following code:

$GEnum[]genum ::∀α.GEnum α ⇒ [ [α ] ]

$GEnum[]genum = λ (gEnumA :: GEnum α)→
([] : []) ||| let $x1 :: [K1 [α ] ]

5 We believe, however, that this is only due to bugs in the inliner, and have filed bug reports
#7109, #7112, and #7114 to address these issues.

http://hackage.haskell.org/trac/ghc/ticket/7109
http://hackage.haskell.org/trac/ghc/ticket/7112
http://hackage.haskell.org/trac/ghc/ticket/7114
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$x1 = map K1 ($GEnum[]genum gEnumA)
in diag (map (λ ($x3 :: α)→

map (λ ($x2 :: K1 [α ])→ case $x2 of
K1 $x4→ $x3 : $x4) $x1)

gEnumA)

Most of the generic overhead is optimised away, but one problem remains: $x1 maps
K1 over the recursive enumeration elements, but this K1 is immediately eliminated by a
case statement. If $x1 was inlined, GHC could perform a map fusion, and then eliminate
the use of K1 altogether. However, we have no way to specify that $x1 should be inlined;
the compiler generated it, so only the compiler can decide when to inline it. Also, we
had to use the compiler flag -fno-full-laziness to prevent some let-floating, but
the flag applies to the entire program and might have unintended side-effects.

Reflecting on our developments in this section, we have seen that:

– Convincing GHC to optimise genum for a simple datatype such as Nat requires
the expected free theorem of (|||). However, due to interaction between phases of
application of rewrite rules, we are forced to introduce new rules for optimisation
of map.

– Optimising genum for a more complicated datatype like lists requires the expected
free theorem of diag. However, even after further tweaking of optimisation flags,
we are currently unable to derive a fully optimised implementation. In any case, the
partial optimisation achieved is certainly beneficial.

– More generally, we see that practical optimisation of generic functions is hard
because of subtle interactions between the different optimisation mechanisms in-
volved, such as inlining, rewrite rule application, let floating, case optimisation,
etc.

These experiments have been performed with GHC version 7.4.1. We have ob-
served that the behavior of the optimiser changes between compiler versions. In par-
ticular, some techniques which resulted in better code in some versions (e.g. the use of
SPECIALISE pragmas) result in worse code in other versions. We are working together
with GHC developers to ensure that generic code, at least for the generic-deriving
library, is specialised adequately, guaranteeing performance equivalent to type-specific
code.

5 Benchmarking

We have confirmed the expected runtime behaviour of our code by benchmarking it.
Benchmarking is, in general, a complex task, and a lazy language imposes even more
challenges on the design of a benchmark. We designed a benchmark suite that ensures
easy repeatability of tests, calculating the average running time and the standard devi-
ation for statistical analysis. It is portable across different operating systems and can
easily be run with different compiler versions. To ensure reliability of the benchmark
we use profiling, which gives us information about which computations last longer. For
each of the tests, we ensure that at least 50% of the time is spent on the function we
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want to benchmark. A top-level Haskell script takes care of compiling all the tests with
the same flags, invoking them a given number of times, parsing and accumulating re-
sults as each test finishes, and calculating and displaying the average running time at
the end, along with some system information. To ensure the improvements are effec-
tive in practice, we have not used micro-benchmarking, and instead benchmark whole
programs.

We have a detailed benchmark suite over different datatypes and generic functions.6

It is, however, useless to show most of the benchmark figures; because we have in-
spected the resulting core code and concluded that it is equivalent to a hand-written
variant, the benchmark is only a form of “sanity-check” on the optimisation. Confirm-
ing the findings of Section 4, the benchmark finds no difference between the running
times of generic versus type-specific equality. We have also benchmarked a traversal
that updates the values in a tree, and a conversion to String; in both cases, the generic
function performs as fast as the handwritten code. The techniques used to optimise these
functions were exactly the same as those for generic equality, and indeed we expect this
to be the case for many common generic functions.

As for enumeration, we find no overhead for the Nat datatype. Enumeration for a
binary tree datatype runs about 1.63 times slower than a type-specific variant, probably
because the optimiser fails to remove all generic representation overhead (as predicted
in Section 4.3). Even with the remaining problems in optimising generic enumeration,
these results are a substantial improvement over our previous optimisation efforts (Ma-
galhães et al. 2010), and rely on techniques that are far less likely to degrade perfor-
mance in other parts of the code.

6 Conclusion

In this paper we have looked at the problem of optimising generic functions. With their
representation types and associated conversions, generic programs tend to be slower
than their type-specific handwritten counterparts, and this can limit adoption of generic
programming in situations where performance is important. We have picked one spe-
cific library, generic-deriving, and investigated the code generation for generic pro-
grams, and the necessary optimisation techniques to fully remove any overhead from
the library. We concluded that the overhead can be fully removed most of the time, us-
ing only already available optimisations that apply to functional programs in general.
However, due to the difficulty of managing the interaction between several different
optimisations, in some cases we are not able to fully remove the overhead. We are con-
fident, however, that this is only a matter of further tweaking of GHC’s optimisation
strategies, and fixing some open bugs.

6.1 Automatic inlining and generation of rewrite rules

Some work remains to be done in terms of improving the user experience. We have
mentioned that the to and from functions should be inlined; this should be automatically

6 https://bitbucket.org/dreixel/public/src/7d32c569e678/benchmark

https://bitbucket.org/dreixel/public/src/7d32c569e678/benchmark
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established by the mechanism for deriving Generic instances. Additionally, inserting
INLINE pragmas for each case in the generic function is a tedious process, which should
also be automated. Finally, it would be interesting to see if the definition of rewrite
rules based on free theorems of auxiliary functions used could be automated; it is easy
to generate free theorems, but it is not always clear how to use these theorems for
optimisation purposes.

6.2 Optimising other libraries

The library we have used for the development in this paper, generic-deriving, is
practical, realistic, and representative of many other libraries. In particular, our tech-
niques readily apply to regular (Van Noort et al. 2008) and instant-generics
(Chakravarty et al. 2009), for instance.

Other approaches to generic programming, such as Scrap Your Boilerplate (SYB,
Lämmel and Peyton Jones 2003, 2004), use different implementation mechanisms and
require different optimisation strategies. SYB, in particular, cannot be optimised us-
ing the same techniques we have seen, because it relies on (type-safe) runtime casts.
Since type comparisons are performed at runtime, the compiler does not have enough
information to automatically specialise generic functions. It remains to be seen how
to optimise other approaches, and to establish general guidelines for optimisation of
generic programs.

In any case, it is now clear that generic programs do not have to be slow, and their
optimisation up to handwritten code performance is not only possible but also achiev-
able using only standard optimisation techniques. This opens the door for a future where
generic programs are not only general, elegant, and concise, but also as efficient as type-
specific code.
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