
Functional Generation of Harmony and Melody

José Pedro Magalhães
Department of Computer Science,

University of Oxford
jpm@cs.ox.ac.uk

Hendrik Vincent Koops
Department of Information and Computing Sciences,

Utrecht University
h.v.koops@uu.nl

Abstract
We present FCOMP, a system for automatic generation of harmony
and accompanying melody. Building on previous work on func-
tional modelling of musical harmony, FCOMP first creates a foun-
dational harmony by generating random (but user-guided) values of
a datatype that encodes the rules of tonal harmony. Then, a melody
that fits to the harmony is generated in a compositional sequence:
generate all “possible” melodies, filter them to remove obvious bad
choices, pick one candidate note per chord, and then embellish the
resulting melodic line.

At this very early stage, we aim to define a solid system as a
foundation that can be used to further improve upon. We care espe-
cially about modularity, so that each individual part of the pipeline
can be easily improved, and ease of adaptation, so that users can
quickly adapt the generated music to their liking. The resulting sys-
tem generates simple but harmonious music, and serves as a good
case study on how functional programming enables quick and clean
prototyping of new ideas, even in the realm of automatic music
composition.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; H.5.5 [Information Interfaces
and Presentation]: Sound and Music Computing

Keywords Automatic composition, automatic harmonisation, har-
mony, HarmTrace, Haskell, melody

1. Introduction
Composition consists in two things only. The first is the or-
dering and disposing of several sounds. . . in such a manner
that their succession pleases the ear. This is what the An-
cients called melody. The second is the rendering audible
of two or more simultaneous sounds in such a manner that
their combination is pleasant. This is what we call harmony,
and it alone merits the name of composition.

Jean-Benjamin de La Borde
Essai Sur La Musique Ancienne Et Moderne (La Borde 1780)

Music is an art form with a very long history, predating even lit-
eracy. Musical composition, the process of creating new music, is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FARM ’14, September 6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3039-8/14/09. . . $15.00.
http://dx.doi.org/10.1145/2633638.2633645

subject of study for centuries, from D’Arezzo (1026) to Schönberg
(1967), to name but two. As any other form of fine art, music em-
bodies human nature, creativity, and aesthetics. Given the artistic
nature of music, it is perhaps unsurprising that automated music
composition, or music composed by algorithmic means, is such a
challenging topic. Music is composed of many aspects, all inter-
twined: melody, harmony, rhythm, form, repetition, instrumenta-
tion, tempo, dynamics, etc. Good music considers all these aspects
individually, and addresses their combination.

In this paper we present FCOMP, a system that generates chord
sequences (harmony) and accompanying melodies. It can be a seen
as a simplified, or foundational, automatic music composition sys-
tem, at least in the historical sense of La Borde (1780). FCOMP
(a combination of the words “functional” and “composition”) deals
only with harmony and melody generation, leaving all other aspects
of music unaddressed (at least for now, but see Section 7). FCOMP
should thus be seen as a foundational tool; its output is not meant to
be music comparable to that composed by humans. Instead, we see
it as an exercise in functional modelling of music. It showcases the
benefits of using Haskell, a pure, statically-typed functional pro-
gramming language (Peyton Jones 2003): FCOMP is highly modu-
lar, easy to adapt and improve, and uses advanced functional pro-
gramming techniques (such as indexed types and generic program-
ming) to model the high-level concepts of music theory in a natural
and effective way. Haskell’s algebraic datatypes behave similarly
to context free grammars, which can be used to model the language
of well-formed chord sequences. Furthermore, functional compo-
sition without explicit mutable state provides a composable way
for defining a pipeline of independent processes, making the global
algorithm easier to understand and adapt.

Figure 1 shows a diagram of the components of FCOMP which
can be easily adapted or exchanged. There are two steps in the har-
mony generation phase (Section 4), and 4 in the melody generation
phase (Section 5). The compositional style of FCOMP makes it easy
both to understand and to modify the system, which is ideal for a
research and educational tool. Specifically, our contributions are:

• FCOMP, a system for automatic generation of harmony and
melody, available online at http://hackage.haskell.org/
package/FComp;

• Another example of an application of a model of harmony
encoded as a Haskell datatype (Magalhães and De Haas 2011);

• A composable pipeline for generating melodies that fit into a
given harmony, with each step being easy to modify or improve;

• As a side-effect of working on FCOMP, we have also developed
a generic data generation function with constraints (which we
use when generating harmony sequences), and made improve-
ments to the instant-generics generic programming library,
extending previous work (Magalhães and Jeuring 2011) to also
support datatypes with indices of kinds other than ?.

http://hackage.haskell.org/package/FComp
http://hackage.haskell.org/package/FComp
http://hackage.haskell.org/package/instant-generics

Define harmony model
Section 4.1

Set rule weight
Section 4.3

Take all possible
melody notes per chord

Section 5.1

Filter melody notes
Section 5.2

Pick one focal melody
note per chord

Section 5.3

Embellish melody
Section 5.4

Output

harmony generated

melody generated

Figure 1. Architecture of FCOMP

1.1 Notation
We use Greek letters for type variables, apart from κ , which is re-
served for kind variables. A colour version of this paper is available
from the first author’s webpage.

1.2 How to use FCOMP

FCOMP is available online at http://hackage.haskell.org/
package/FComp. After downloading and installing the code, FCOMP
can be executed to generate random songs in MIDI format. They
will also be played-back automatically. The interested user can
peruse and edit the source code to change the behaviour of the
generation process, as documented throughout this paper.

1.3 Roadmap
The rest of this paper is organised as follows. We begin by review-
ing related work and positioning FCOMP in Section 2. Then, we
provide a brief introduction to music theory in Section 3, and pro-
ceed to describe how FCOMP generates harmony (Section 4) and
accompanying melody (Section 5). We then show and discuss a
number of examples in Section 6, list directions for future work in
Section 7, and conclude in Section 8.

2. Related work
The field of computer generated music concerns music composed
by, or aided by, a computer program. Although large parts of to-
day’s popular and electronic music is created with aid of a com-
puter (digital effects, editing, etc), computer generated music refers
specifically to music where the composition itself is created by a
computer. This section gives a brief overview of historic and cur-
rent research in this field.

Music, in contrast to other forms of art, has been subjected to
rigorous formalisation for a long time, arguably since the invention
of the tonal system. Formalisation and algorithms go hand in hand,
and composers have therefore been using algorithms to assist in the
creation of new music for hundreds of years. It is only natural that
composers started to use the computers with these algorithms when
they became more common. The Illiac Suite (Hiller and Isaacson
1959) is generally agreed to be the first piece of music composed
by a computer. Hiller and Isaacson used the Illiac computer at the
University of Illinois, Urbana-Champaign in an experiment to pro-
gram, in binary, algorithms that created a piece in four parts, each
exploring different musical ideas. Their work paved the way for
composers such as John Cage, Iannis Xenakis, Gottfried Michael
Koenig, and many more, who all used computers in various ways
to generate music.

In general, there are two types of systems in computer generated
music: stochastic and determinate systems. More recent systems
are usually of a third type, which is a hybrid of stochastic and
determinate techniques.

Stochastic systems Stochastic (or aleatoric) systems use random
procedures (for example Markov chains or random number genera-
tors) to create a new piece on every run. An early example of a com-
poser using stochastic systems to create music is Iannis Xenakis, a
pioneer of stochastic music. In his piece Analogiques, Xenakis used
Markov chains to generate musical content. Markov-based models
are interesting because of their ability to generate new musical ma-
terial in a learned style. Later examples are works by John Cage and
Cope (1996). A more recent example of the use of a Markov-based
system is the Continuator (Pachet 2003), which is able to learn and
generate music in any learned style. One advantage of such an ap-
proach is that the system can be used as an instrument: it supports
musical interaction and is therefore capable of creating improvisa-
tions and continuations of a piece on the fly. These types of systems
differ with FCOMP in that the musical rules to compose new pieces
need to be learned from a corpus of example music. The absence
of explicit, symbolic music information such as harmonic structure
makes these systems harder to interpret and analyse. Systems that
do use explicit symbolic rules to create a piece are generally called
determinate systems.

Determinate systems Determinate systems are rule-based models
that produce the same output every time on every run. Most of the
research in this area deals with tonal music, since this type of mu-
sic has a long history of strict formalisation. Rule-based systems
have been used by Ebcioğlu (1988) to create four-part chorales and
by Steedman (1984) to create jazz chord sequences, for example.
Rohrmeier (2007, 2011) models tonal harmony as an elaborate re-
cursive context-free grammar (CFG). The HARMTRACE harmony
model (De Haas et al. 2013) implements and extends the ideas of
Rohrmeier, but differs from Rohrmeier’s grammar in several as-
pects. Rohrmeier’s model is more elaborate, as it includes phrasing
and modulating into any key at any point in a sequence. However,
from an implementation perspective, this would generate too many
ambiguous solutions for a single sequence of chords. Therefore,
in HARMTRACE, modulation and phrasing are not implemented
as context-free rules in the way Rohrmeier formulates them. An-
other example of rule-based systems are Lindenmayer systems (L-

http://hackage.haskell.org/package/FComp
http://hackage.haskell.org/package/FComp

systems, Lindenmayer 1968), a parallel rewriting system and a type
of formal grammar which is capable of generating a complex hier-
archy from a simple input. L-systems are used by Prusinkiewicz
(1986), for example, to generate a string of symbols to be inter-
preted as a sequence of notes.

Hybrid systems Modern techniques in algorithmic music, like
FCOMP, are often a hybrid of stochastic and determinate systems.
Purely rule-based systems are generally too predictable to create
interesting new music, but allow for thorough analysis of the gen-
erated output. A purely stochastic system is capable of generating
new, unexplored musical ideas and is therefore better capable for
modelling creativity, but its output is not easily explained. Hybrid
models usually try to combine these two approaches: the determin-
istic part creates a context in which a musical piece can be explored,
and a stochastic part that tries to creatively find interesting patterns
within this context. An example of such a hybrid system is that
of Koops et al. (2013), which is capable of harmonising a given
melody through the aid of a functional model of tonal harmony. The
given input melody is analysed and appropriate chords are selected
for each note. These chords are then checked by a harmony model,
that will select a good sequence to match the melody. Because there
is not a single best chord sequence to harmonise a melody, the se-
quence is chosen randomly from a pool of good candidates. An-
other example comes from Quick and Hudak (2013), who use a
generative grammar in which each rule is associated with a proba-
bility for generating pieces similar to classical chorales.

3. A brief introduction to music theory
This section provides a brief introduction to music theory, har-
mony, melody, and composition topics needed to better understand
FCOMP. For a thorough introduction, we refer the reader to Laitz
(2008). To ease the understanding of musical concepts for program-
mers, we accompany our description with illustrative code snippets
of how to encode each musical concept in Haskell. Since FCOMP
follows a line of previous work (Magalhães and De Haas 2011;
De Haas et al. 2013; Koops et al. 2013), this section restates some
parts of earlier work adapted for the current context.

Notes Individual sounds with a fixed frequency are represented
by a note in Western tonal music. Notes are commonly referred to
by one of the elements in the list of semitones [C,C]≈D[,D,D]≈
E[,E,F,F]≈G[,G,G]≈A[,A,A]≈B[,B]. We can encode this no-
tion of note in Haskell as a parametrised datatype:

data Note α = Note Accidental α

data Accidental = \ |] | [
data DiatonicNatural= C | D | E | F | G | A | B
type NoteNatural = Note DiatonicNatural

Notes can be raised or lowered by a semitone, which is denoted by
an accidental: the former is denoted by] and the latter is denoted
by [. An note that is neither raised nor lowered is denoted by \.
We make Note a parametrised datatype because we will later have
notes labelled with datatypes other than DiatonicNatural.

Enharmonic Equivalence Most musical instruments since the
18th century are tuned in equal temperament. In this system of
tuning, every pair of adjacent notes has an identical frequency
ratio, which results in the perceived distance between an interval
being constant for every equal interval in the system, wherever it
may appear. In equal temperament, a note with the accidental]
is enharmonic equivalent to that note one DiatonicNatural higher
with the accidental [.1 To given an example, Note C] and Note D [

1 This does not hold for all note combinations (in particular for B and C,
and E and F), but further detail is unnecessary here.

Semitone distance Name

0 unison
1 minor second (semitone)
2 major second
3 minor third
4 major third
5 perfect fourth
6 diatonic tritone
7 perfect fifth
8 minor sixth
9 major sixth
10 minor seventh
11 major seventh
12 octave

Table 1. A list of intervals and their names

sound the same, but are “spelled” differently. For simplicity we
abbreviate the syntax of notes by writing C] instead of Note] C,
for example, and C instead of Note \ C (naturals are the default
accidental). Enharmonic equivalence is denoted with D]≈E[.

In musical set theory, pitch classes are defined by two equiva-
lence relations. Pitches belong to the same pitch class if they have
some relation of compositional or analytical interest, such as the
octave relation (Roeder 2013). The second relation is the enhar-
monic equivalence relation, which means that all the pitches played
on the same key of a regular piano keyboard are in the same set.
From these two equivalence relations there are just 12 pitch classes,
corresponding to the notes of the chromatic scale, often numbered
from 0 to 11. The choice of which pitch class to call 0 is a matter
of convention; we call C 0 (in which case C]≈D[is 1, D is 2, etc.).
The function toSemitone returns the pitch class of a Note:

toSemitone :: (Enum α)⇒ Note α → Int
toSemitone (Note acc p) = (sem+ toPitchClass acc) ‘mod‘ 12

where sem = [0,2,4,5,7,9,11] !! fromEnum p
toPitchClass ::Accidental→ Int
toPitchClass \= 0
toPitchClass]= 1
toPitchClass [= −1

Similarly, we can define a function toNote that returns the note
corresponding to a pitch class:

toNote :: Int→ NoteNatural
toNote i = let roots = [Note \ C,Note] C,Note \ D

,Note [E,Note \ E
,Note \ F,Note] F,Note \ G
,Note [A,Note \ A
,Note [B,Note \ B]

in roots !! (i ‘mod‘ 12)

Intervals The distance between two notes is called an interval
and can be either melodic or harmonic. A melodic interval consists
of two notes that sound consecutively, whereas a harmonic interval
denotes two notes that sound together. Intervals are commonly
classified as a combination between their quality and a number.
The quality is one of major, minor, or perfect, and the number
is one of unison, second, third, etc. Intervals can be seen as the
building blocks of a melody, in that a series of (melodic) intervals
creates a melodic sequence. Common names for the intervals are
shown in Table 1; enharmonic equivalent names have been omitted.
A representation of equivalent intervals on a staff can be found in
Figure 2.

��
7 th

min

� ��
7 th

maj min

� ��
6 th

maj

��
3 rd

min

� ��
8 th

octave

�
min
2 nd

��
unison

1 st
��

maj
2 nd

��� ��
5 th

per

��
6 th

��
3 rd

maj

��
4 th

per

Figure 2. Intervals and their difference in staff positions.

Figure 3. The circle of fifths.2

Scales and Scale Degrees A scale is a sequence of intervals in
a specific ascending or descending order. Scales are divided into
categories based on the qualities of intervals they contain, being
major, minor, or other. The notes of these scales are denoted by
scale degrees, and can be be identified by Roman numerals (I, II,
III, IV, V, VI, and VII), the first of which is also referred to as
the tonic. This scale degree representation can be implemented in
Haskell as a DiatonicDegree together with the earlier introduced
parametrised Note in the following way:

data DiatonicDegree= I | II | III | IV | V | VI | VII
type NoteDegree = Note DiatonicDegree

Keys Commonly, the notes of a scale belong to a certain key,
which defines the context in which the character of a musical piece
can be explored. The definition of a key is rather complex and
historically not without disagreement, but can be seen as the notes
of a scale, its chords, and the use of specific chord progressions.
The key is named after the tonic, which is usually the focal point
of a piece. A key is defined by the number of accidentals on the
scale; Figure 3 shows which keys are associated with which specific
accidentals. We can represent keys in Haskell as follows:

data Key = Key {keyRoot ::Note DiatonicNatural
, keyMode ::Mode}

data Mode= MajMode |MinMode

Chords and Quality Combining two or more harmonic intervals
creates a chord. The simplest chords are called triads, consisting
of one harmonic interval of a third and one harmonic interval of
a fifth on a common root note. The three notes of this chord are
called root, third, and fifth. The quality of the chord is called minor
if the third is minor, and, similarly, if the third is major, the chord
is called major. The chord is called diminished if the third is minor
and the fifth is lowered one semitone. A dominant seventh chord is
a major chord with an added seventh interval.

Chords can be labelled unambiguously (Harte et al. 2005) by
giving the following parts:

1. The chord root, which is either an absolute note like a C or a
scale degree;

2. The quality of the chord, for example major or minor; and

3. Optional added or removed intervals, for example a seventh.
For simplicity we will not use these added intervals in our
implementation.

We encode this simplified labelling of chords in Haskell as
follows:

data Chord α = Chord {chordRoot ::Note α

, chordQuality ::Quality}
data Quality = Maj |Min | Dom7 | Dim

This datatype represents a chord built from a chordRoot, which can
be encoded as a NoteNatural or a NoteDegree. This way we can
represent chords built from an absolute root note, as well as chords
built from scale degrees. Quality defines if the chord is major,
minor, dominant, or diminished; we limit ourselves to these four
choices for simplicity. As with Notes, we define convenience type
synonyms for chords encoded with degrees or labels:

type ChordDegree = Chord DiatonicDegree
type ChordNatural= Chord DiatonicNatural

Table 2 shows all the scale degrees and their corresponding
chords in major and minor keys. We use r:q as a syntactic shorthand
for Chord r q.

Harmony Functional harmony (Whittall 2013) is a theory of
tonal harmony by Riemann (1893) that describes the common har-
mony practice from the 18th until the 20th century. The functional
harmony theory states that each chord within a key can be reduced
to one of three harmonic functions—tonic, dominant, or subdomi-
nant. The tonic affirms the key, the subdominant builds tension, and
the dominant builds maximum tension. These rules are expressed
in the grammar of FCOMP (see Section 4).

Composition The process of composing an original piece of mu-
sic differs greatly between styles and historical periods. In very
broad terms it compasses the structuring and ordering of sounds,
but this can be done in an infinite number of interesting ways.

Although far from being a solved problem, the kind of western
tonal music that this research is concerned with generally uses
rather specific rules to create a musical piece. These rules prescribe
a system in which harmony and melody are manipulated within the
boundaries of a chosen key and scale. An example of such a rule
is that a piece should always end in a cadence, which is a specific
sequence of (at least two) chords that create a sense of resolution
and indicates whether the piece is to continue or has concluded.
In our case, we use a compositional technique in which chords
act as building blocks for a melody. By creating a sequence of
chords (a harmony) generated from a harmony model, we create

2 Image taken from http://en.wikipedia.org/wiki/File:Circle_of_
fifths_deluxe_4.svg.

http://en.wikipedia.org/wiki/File:Circle_of_fifths_deluxe_4.svg
http://en.wikipedia.org/wiki/File:Circle_of_fifths_deluxe_4.svg

Scale degree I II III IV V VI VII
Major key I:Maj II:Min III:Min IV:Maj V:Maj VI:Min VII:Dim
Minor key I:Min II:Dim III:Maj IV:Min V:Min VI:Maj VII:Dim

Table 2. Scale degrees and chords arising in major and minor keys.

a restriction on how we can build a melody. A correct sequence of
chords is relatively easy to generate, but creating a pleasant melody
is much harder. Good melodies usually have easily discernible
recurring patterns and events at several temporal levels. Typically,
a subsequently altered, repeated, or sequenced succession of notes
throughout a musical piece can be found in a melody, something
which is generally considered to be the sign of a great composer, if
done in an interesting and appealing way.

4. Generating harmony
Our system is concerned with the generation of two basic ingredi-
ents of tonal music: harmony and melody. These two elements are
intertwined; a specific harmony sequence restricts the freedom in
generating an accompanying melody, and a standalone melody of-
ten induces certain harmony progressions. In FCOMP, we begin by
generating a harmony sequence, and then create a melody that fits
the harmony. We choose this approach as a matter of convenience;
while harmony often follows strict rules that are amenable to hier-
archical modelling, rules for writing “correct” melodies are more
subtle and hard to specify formally. As such, we use the harmony
to restrict the freedom of choice in the melody. This section deals
with the problem of generating valid harmony sequences; Section 5
looks at the generation of fitting melodies.

4.1 Representing harmony structure hierarchically
Like De Haas et al. (2013) in their HARMTRACE system, we use a
model of tonal harmony as a family of Haskell datatypes. However,
our model is significantly different from those in HARMTRACE.
Since our main concern is harmony generation, and not recogni-
tion, we do not have to worry much about ambiguity in the model,
for example. Furthermore, we encode only very basic harmony
rules, eliding the complexity of chains of secondary dominants, tri-
tone substitutions, etc; even a very simple harmony allows for the
creation of musically-interesting melodies, so we do not need extra
complexity at this stage. Fortunately, the design of HARMTRACE
makes it easy to define new models, and we can reuse lots of code
for our simplified model due to the use of generic programming
techniques (Magalhães and De Haas 2011).

For ease of presentation, we show the model as a parametrised
context-free grammar. In reality, the model consists simply of
Haskell generalised algebraic datatypes (GADTs, Schrijvers et al.
2009); the translation from this notation to actual GADTs is
straightforward, as shown in Section 4.2.

In the rules below, we use the variable M ∈ {Maj,Min} when
the rule is applicable both to pieces in minor and major modes.
Superscripts denote chord quality: a major chord (no superscript),
minor (m), dominant seventh (7), and diminished (0). Pieces consist
of sequences (lists) of phrases. A phrase can either be in tonic-
dominant-tonic form, or dominant-tonic:

1 PieceM → [PhraseM]

2 PhraseM→ TonM DomM TonM
3 | DomM TonM

The tonic consists only of the I chord, in major or minor depending
on the mode of the piece:

4 TonMaj → IMaj
5 TonMin→ Im

Min

We allow more freedom in the dominant. A dominant can either ex-
pand to a dominant or major chord built on the fifth scale degree, to
a diminished chord built on the seventh, be preceded by a subdom-
inant, or even be prepared by a secondary dominant (a dominant
chord on the second scale degree):

6 DomM→ V7
M

7 | VM
8 | VII0

M
9 | SubM DomM

10 | II7
M V7

M

The subdominant, in major mode, can either be realised by a II:Min
chord or a IV:Maj, this one optionally preceded by a III:Min. In
minor mode, for simplicity, we build a subdominant only from a
IV:Min chord:

11 SubMaj → IIm
Maj

12 | IVMaj
13 | IIIm

Maj IVMaj
14 SubMin→ IVm

Min

Finally, scale degrees map to actual ChordNaturals, when given
a specific key. We show only a few of these rules as an example
(choosing C major as key):

15 IMaj → C:Maj
16 Im

Min → C:Min
17 V7

M → G:Dom7

18 VII0
M→ B:Dim

We have shown a deliberately simplified model of harmony,
which will suffice for our purposes of generation of simple melodies.
However, due to our use of generic programming techniques, the
model is very easy to extend. All that is necessary is to add or re-
move rules; the rest of the code adapts automatically to the new
rules.

4.2 Concrete representation as GADTs
The rules of the previous section are implemented as Haskell
GADTs. We show the encoding of a piece and phrases (specifi-
cations 1–3):

data Piece= ∀µ ::Mode.Piece [Phrase µ]

data Phrase (µ ::Mode) where
PhraseIVI ::Ton µ →Dom µ → Ton µ → Phrase µ

PhraseVI :: Dom µ → Ton µ → Phrase µ

Each of the constructors of datatypes corresponds to one specifica-
tion. The type index µ is used to keep track of which rules are appli-
cable in major or minor mode. For convenience, it is existentially-
quantified at the Piece level. We use datatype promotion (Yorgey
et al. 2012) so that we can reuse the constructors introduced in Sec-
tion 3 as types; this is not essential, but removes code duplication,
and makes the datatypes more correct, as their indices cannot be
instantiated with types of the wrong kinds.

Tonics and dominants (specifications 4–10) are encoded as fol-
lows:

data Ton (µ ::Mode) where
TonMaj ::SD ‘I ‘Maj→ Ton ‘MajMode

TonMin ::SD ‘I ‘Min→ Ton ‘MinMode

data Dom (µ ::Mode) where
Dom1 ::SD ‘V ‘Dom7 →Dom µ

Dom2 ::SD ‘V ‘Maj →Dom µ

Dom3 ::SD ‘VII ‘Dim →Dom µ

Dom4 ::SDom µ →Dom µ →Dom µ

Dom5 ::SD ‘II ‘Dom7 → SD ‘V ‘Dom7 →Dom µ

In the constructors of Ton, we can see that TonMaj, corresponding
to specification 4, is only available in the major mode, while TonMin
is only available in minor mode. In contrast, all the constructors of
Dom are mode-agnostic.

Scale degrees are at the bottom of the hierarchy, and simply
contain a ChordDegree (as defined in Section 3):

data SD (δ ::DiatonicDegree) (γ ::Quality) where
SurfaceChord ::ChordDegree→ SD δ γ

Scale degrees are indexed at the type level over their degree and
quality. The constructor SurfaceChord ignores the indices, but all
chords are generated in a type-based fashion that ensures that in
a SurfaceChord c :: SD δ γ , the c has the appropriate degree and
quality (see Section 4.3).

4.3 Generic data generation with constraints
Having a model of harmony as a family of Haskell datatypes, the
task of generating possible harmony sequences comes down to gen-
erating random values. Furthermore, because our datatypes use in-
dices to keep track of which scale degrees are allowed where, we
can guarantee that the generated chord sequences will be harmon-
ically correct according to the model: we just have to guarantee
that SurfaceChords we produce have a degree and quality match-
ing those given at the type level. As such, there is no need to filter
generated sequences for validity.

However, not all harmonically valid chord sequences are mu-
sically interesting. For our purposes, we prefer longer sequences,
with a richer harmonic structure. If we devise a truly random data
generator, it is likely that many sequences will be simple V:Maj-
I:Maj sequences, for example. We would like to have some control
over which rules should appear more or less frequently, in order to
be able to direct the generation into specific choices, while keep-
ing an element of randomness. At the same time, we want to keep
our data generation code generic. Since FCOMP is designed to be
easily adaptable, and changing the model means changing datatype
definitions, we want to have as little type-specific code as possible,
so that fewer code changes need to be made for every change to the
model.

Our solution is a generic data generation program that can
be parametrised over weights for each constructor. Generic data
generation is a relatively straightforward task; adding constructor
weights makes it slightly more involved. The details of this generic
program are outside the scope of this paper; in this section we’ll
show simply how it can be used to produce chord sequences.
The interface to the generator is a function gen which produces
values in QuickCheck’s Gen monad (Claessen and Hughes 2000)
according to some user-provided FrequencyTable, which is a list
of constructor names together with their desired weight:

type FrequencyTable= [(String,Int)]

gen :: (Representable α,Generate (Rep α))
⇒ FrequencyTable→ Gen α

The Representable instances are required by the generic program-
ming library we use, and are obtained using Template Haskell
(Sheard and Peyton Jones 2002) with no added complexity for the
user. The Generate type class implements the generic function. The
only non-generic part of our generator is the case for SD, where we

enforce that the generated SurfaceChord has the degree and quality
given by the type-level indices:

genSD ::Gen (SD δ γ)
genSD = return◦SurfaceChord $ Chord (Note \ d) q

where d = toDegree (Proxy ::Proxy δ)
q = toQuality (Proxy ::Proxy γ)

data Proxy (α :: κ) = Proxy

The classes ToDegree and ToQuality perform a type-to-value
mapping, ensuring we build a chord with degree and quality match-
ing the indices:

class ToDegree (δ ::DiatonicDegree) where
toDegree ::Proxy δ →DiatonicDegree

instance ToDegree ‘I where
toDegree = I

. . .

class ToQuality (γ ::Quality) where
toQuality ::Proxy γ →Quality

instance ToQuality ‘Maj where
toQuality = Maj

. . .

This is a typical way of handling pseudo-dependently typed pro-
gramming with singleton values in Haskell (Eisenberg and Weirich
2012).

4.4 Examples
We can now show an example of actual harmony generation. Be-
low we build a generator that favours the production of Dom4
and Dom5 constructors. Omitted constructors are given a default
weight of 1. We use a function printOnKey to display the gener-
ated chords (transforming the Chord NoteDegree of the model into
Chord NoteNatural):

testGen ::Gen (Phrase ‘MajMode)
testGen = gen [("Dom4",3),("Dom5",4)]
example :: IO ()
example = let k = Key (Note \ C) MajMode

in sample′ testGen>>=mapM (printOnKey k)
printOnKey ::Key→ Phrase ‘MajMode→ IO String

We can now observe a sample of generated chords in an interactive
compiler session:

> example
[C:Maj,D:Dom7 ,G:Dom7 ,C:Maj]
[C:Maj,G:Dom7 ,C:Maj]
[C:Maj,E:Min,F:Maj,G:Maj,C:Maj]
[C:Maj,E:Min,F:Maj,D:Dom7 ,G:Dom7 ,C:Maj]
[C:Maj,D:Min,E:Min,F:Maj,D:Dom7 ,G:Dom7 ,C:Maj]

These chords can also be seen on a staff in Figure 4. We can observe
that the Dom4 constructor was used in the last three values, and
Dom5 in the last two, as expected from the weights given.

This example serves only as a simple demonstration of the
power of our generic generator of chord sequences. Not only is
the harmony model used easy to adapt, it is also easy to guide the
generation into specific harmony rules. Since we support diverse
harmony models, we could model different styles of harmony, if we
wanted to generate jazz style music, or Bach chorales. Adding or
changing a model requires recompilation, but adapting the weights
for a specific model does not. Carefully chosen weights can also be
used to forbid entirely certain rules (by assigning a weight of zero),

?

?

?

?

?

œ
œ
œ

œ
œ
œ
œ
#

œ
œ
œ
œ

n

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ œ

œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ œ

œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ
#

œ
œ
œ
œ

n

œ
œ
œ

œ
œ
œ

œ
œ
œ
n

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ
#

œ
œ
œ
œ

n

œ
œ
œ

Figure 4. An example of generated chords.

or make others certain (by assigning a very large weight). This type
of freedom allows for creative experimentation in music genera-
tion, and from a rather musical point of view; we are not adjusting
computational parameters, we are adjusting musical rules! We ex-
pect this to make FCOMP easier to use by musicology experts, who
are more familiar with music theory than with programming lan-
guages.

5. Generating melody
Having generated a harmonic basis, we can proceed to generating a
melody that fits into the harmony. FCOMP achieves this in 4 steps:

1. Generate a list of candidate melody notes per chord;

2. Refine the candidates by filtering out obviously bad candidates;

3. Pick one focal candidate melody note per chord;

4. Embellish the candidate notes to produce a final melody.

These four steps combine naturally using plain monadic bind:

generateMelody ::Key→ State MyState Song
generateMelody k =

genCandidates>>= refine>>=pickOne>>= embellish
>>= return◦Song k

We describe each of these steps in a subsection of its own.

5.1 Candidate melody notes per chord
In order to generate a melody, we first need to define the concept
of song, which is a list of chords paired with melody notes, in a
specific key:

data Song = Song Key [(ChordNatural,[MelodyNote])]

Up until this stage we haven’t had to consider notes in different
octave positions. However, when producing a melody, the octave
of each note matters, as we want to avoid the discontinuities that
would be caused by having all the notes in the same octave (number
3). As such, we introduce the type of MelodyNote, which is simply
a NoteNatural together with its octave:

data MelodyNote= MelodyNote {mnRoot ::NoteNatural
, mnOctave ::Octave}

type Octave= Int

The process of generating melodies will frequently require a
source of randomness, and may need to look up the original chords
and indeed even their harmony relationships. As such, we embed
the whole melody generation code in a state monad, keeping a
number of relevant information in the state:

data MyState= MyState {genState ::StdGen
, keyState ::Key
, pieceState ::Piece
, chordsState :: [ChordDegree]}

With this infrastructure in place, we are ready to proceed to the
first step, which consists of generating a list of candidate melody
notes per chord. In order to favour consonance, and keeping with
simplicity, FCOMP only considers the notes of the chord to be ini-
tial candidates. This is a simple enumeration of the notes in the gen-
erated chords, followed by a trivial embedding into MelodyNote.
We begin by assigning all notes to the same octave, and look into
continuity problems later. The type of the function that performs
this generation step, genCandidates, is shown here; its code is
elided as it is not particularly insightful:

genCandidates ::State MyState [(ChordNatural,[MelodyNote])]
genCandidates = . . .

5.2 Filter initial candidates
In the second phase, we reduce the number of candidate melody
notes by filtering out some undesirable notes. As an example, we
show how to ensure that:

• The first melody note is always one of I, III, or V;
• The last melody note is I, if I is in the final chord, or V

otherwise.

These rules help enforce basic melody writing principles. With the
first rule, we make sure that the first melody note helps reinforce
the key of the piece, by choosing one of I, III, or V , the notes in the
tonic chord. The second rule guarantees that the melody feels stable
at the end, by picking the root note of the key whenever possible,
or the fifth scale degree otherwise (as then we will be in a half
cadence).

The Haskell code to perform this filtering is shown below. To
handle the first melody note, it builds the notes of the tonic chord
(first), and then computes the intersection of this list with the
current candidates for the first note (firstNotes). The last note is
handled by final:

refine :: [(ChordNatural,[MelodyNote])]
→ State MyState [(ChordNatural,[MelodyNote])]

refine ((cl,mns) : cs) =
do k← gets keyState

let indices = case keyMode k of
MajMode→ [0,4,7]
MinMode→ [0,3,7]

first = map (makeNote k) indices
firstNotes = let wanted = first ‘intersect‘ mns

in if null wanted then mns else wanted
lastNote ns = let (a, [b]) = splitAt (length ns−1) ns

in a++[final b]

final (c,n) = let n′ = if makeNote k 0 ∈ n
then [makeNote k 0]
else [makeNote k 7]

in (c,n′)
return $ ((cl,firstNotes) : lastNote cs)

makeNote ::Key→ Int→MelodyNote
makeNote k i = let ki = toSemitone (keyRoot k)

in MelodyNote (toNote (i+ ki)) 3

5.3 Pick one focal candidate per chord
The third step of our algorithm chooses one candidate per chord out
of the list of candidates under consideration so far. We pick a note

randomly (function choose), but we also ensure that sequences such
as VII-I and I-VII are done with the interval of a second, and not a
seventh. Since we know that, up to this stage, all melody notes were
on octave number 3, this just requires an appropriate transposition
by an octave up or down (function resolve):

pickOne :: [(ChordNatural,[MelodyNote])]
→ State MyState [(ChordNatural,MelodyNote)]

pickOne cs =
do s← get

let g = genState s
rs = randoms g
k = keyState s
result = map choose (zip cs rs)
choose ((cl,mns),r) = (cl,mns !! (r ‘mod‘ length mns))
resolve ((c1,n1) : (c2,n2) : cns)
| n1 ≡ makeNote k 0 ∧ n2 ≡ makeNote k 11
= (c1,n1) : (c2,octaveDown n2) : resolve cns
| n1 ≡ makeNote k 11 ∧ n2 ≡ makeNote k 0
= (c1,n1) : (c2,octaveUp n2) : resolve cns
| otherwise = (c1,n1) : resolve ((c2,n2) : cns)

return (resolve result)
octaveDown,octaveUp ::MelodyNote→MelodyNote
octaveDown (MelodyNote r n) = MelodyNote r (n−1)
octaveUp (MelodyNote r n) = MelodyNote r (n+1)

5.4 Embellish
The last step of melody generation in FCOMP is to embellish the
notes chosen for each chord. From the previous step we get one
MelodyNote per ChordNatural; in this step, we return a list of
MelodyNotes per chord, as we might want to have multiple melody
notes per chord. Unlike previously, this list does not represent a set
of candidates; now it represents a linear sequence of notes.

Embellishing a melody is a process of creativity and invention.
The possibilities are limitless; in fact, of the four steps of generating
a melody in FCOMP, we suspect this last one to be the most
complex and important. For now, we present only two simple forms
of embellishment:

• If two consecutive melody notes are the same, we randomly
pick a small melodic variation between the two notes;

• Otherwise, connect two consecutive melody notes with a
melodic line taken from a scale.

Since our embellishment techniques always look at two con-
secutive notes, we first perform a traversal of the chords and call
connectNotes with every two consecutive notes (also passing a
fresh StdGen):

embellish :: [(ChordNatural,MelodyNote)]
→ State MyState [(ChordNatural,[MelodyNote])]

embellish ((c,mn) : cs) = do g← gets genState
k← gets keyState
return $ go k (c,mn,g) cs

where
go k (c1,n1,) [] = [(c1, [n1])]
go k (c1,n1,g) ((c2,n2) : cs) =

let (,g′) = next g
in (c1,connectNotes g k c1 n1 n2)

: go k (c2,n2,g′) cs

The function connectNotes is the main workhorse of this stage.
It takes a generator, the key, current chord and melody note, the
next melody note, and it returns a list of notes representing the new
melodic line for this chord. In case the two notes are the same (we

will use the C note as the reference for our example), we choose
uniformly between one of four embellishment choices:

1. Do nothing, leaving the repetition unchanged;

2. Transform C-C into C-D-E-C;

3. Transform C-C into C-B-C;

4. Transform C-C into C-E-D-C.

The Haskell code responsible for this embellishment is shown here:

connectNotes :: StdGen→ Key→ ChordNatural
→MelodyNote→MelodyNote→ [MelodyNote]

connectNotes g k c n1 n2 | n1 ≡ n2 =
let scale = scaleFromChord c

inScale line = if n1 ∈ scale then line else [n1]
f123−132 [c,d,e] = [c,e,d]

in case fst (randomR (0,3 :: Int) g) of
0→ [n1]
1→ inScale◦ take 3◦dropWhile (6≡ n1)$ scale
2→ inScale◦ take 2◦dropWhile (6≡ n1)$ reverse scale
3→ inScale◦ f123−132 ◦ take 3◦dropWhile (6≡ n1)$ scale

When two consecutive notes are different, we connect them
by using notes taken from a scale on the current key. This makes
essential use of the Ord instance for MelodyNote:

connectNotes g k c n1 n2 =
let scale = scaleFromKey k

line = if n1 <n2
then takeWhile (<n2)◦dropWhile (6 n1)

$ scale
else takeWhile (n2<)◦dropWhile (n1 6)

$ reverse scale
in n1 : line

scaleFromChord ::ChordNatural→ [MelodyNote]
scaleFromChord = . . .

scaleFromKey ::Key→ [MelodyNote]
scaleFromKey = . . .

The consequence of using this strategy when embellishing two non-
adjacent notes is that we will have very continuous melodies. While
discontinuity has to be used carefully in a melody, total absence of
discontinuity is not common. We discuss how to further improve
our melodies in Section 7.

6. Examples
Having seen the internals of FCOMP, we are ready to show some
sample results. This section analyses three pieces generated by
FCOMP, describing their harmony and melody. We show two
pieces in major mode (Section 6.1 and Section 6.2) and one piece
in minor mode (Section 6.3), all of them in a different key. In Sec-
tion 6.4 we discuss common properties of the generated songs.
Since FCOMP does not currently assign any specific rhythmic val-
ues, we abstract away from rhythm and meter in our rendering of
the scores.

6.1 Piece 1
The first generated piece, shown in Figure 5, is in the key of
C major. A sequence of five chords is generated with a melody
containing the notes C, D, E, F, and G.

Harmony The chord sequence opens with a C:Maj major chord,
followed by E:Min, F:Maj, D:Dom7 , G:Dom7 , ending in C:Maj.
In scale degree notation this progression is I:Maj-III:Min-IV:Maj-
II:Dom7-V:Dom7-I:Maj.

&

?

œ œ œ œ œ œ œ œ œ
œ œ œ œ œ œ œ œ œ œ œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ
#

œ
œ
œ
œ

n

œ
œ
œ

Figure 5. Piece 1 in C major.

The sequence opens with the C:Maj because of a constraint in
the grammar, as can be seen in specification 4. Pieces consist of
sequences of phrases, and a phrase either starts with the tonic or
dominant. If it starts with the tonic, as it does in this case, it consists
only of the I chord, which is a C:Maj in the case of the key of C
major. In Figure 6 we show the harmony tree corresponding to the
generated sequence of chords. We label each node with the name of
the rule subscripted with the specification number (from Section 4).

Piece1

Phrase2

Ton4

I:Maj

C:Maj

Dom9

Dom10

V:Dom7

G:Dom7

II:Dom7

D:Dom7

Sub13

IV:Maj

F:Maj

III:Min

E:Min

Ton4

I:Maj

C:Maj

Figure 6. The harmony tree for Piece 1.

The final three chords form a classic sequence: the II:Dom7-
V:Dom7-I:Maj progression. This is a widely used sequence, most
notably in jazz harmony, but also as a closing part of a sequence
called a cadence. The chords of the progression successively de-
scend in intervals of a fifth; this establishes tonality, but in an har-
monic interesting way by introducing chromaticism (adding non-
key notes).

Melody The melody consists of twenty notes spanning from C
to G. In this example, a repetition is created: the melody between
chord one to three is repeated between chord three and six. Because
each of them is harmonised with different chords, they have their
own character. From the first chord to the second the notes are
connected through a series of ascending notes. The same pattern,
appears in reverse from the second to the third chord. In between
chord three and four, a jump of a third is created due to the use of
the fourth rule of the embellish function as described in Section 5.4.
The restatement of an embellishment in the melody shows that
FCOMP is capable of generating a piece with repetition, something
which is considered to be important in musical form.

6.2 Piece 2
This second piece, shown in Figure 7, is in the key of G major. It
consists of a sequence of seven chords with a melody containing
the notes between a C and a G an octave higher.

&

#

?#

œ œ œ œ œ
œ œ

œ œ
œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ

œ
œ
œ

Figure 7. Piece 2 in G major.

Harmony The harmony sequence of this piece, just like the pre-
vious example, opens with a I chord, which is a G:Maj chord in
the key of G major. After the G:Maj chord, a sequence of A:Min,

C:Maj, A:Min, C:Maj, D:Maj follows, before ending at a G:Maj
chord. In scale degree notation this progression is I:Maj-II:Min-
IV:Maj-II:Min-IV:Maj-V:Maj-I:Maj. Just like in the last exam-
ple, Phrase is expanded to Ton Dom Ton; the entire harmony tree
corresponding to the generated sequence of chords can be found
in Figure 8. It is a sequence of repeating II-IV before ending in a
perfect cadence, which is the most direct means of establishing the
tonic, and the end of a piece. This cadence is strengthened by the
preceding IV , creating a very strong sense of conclusion.

Piece1

Phrase2

Ton4

I:Maj

G:Maj

Dom9

Dom9

Dom9

Dom9

Dom7

V:Maj

D:Maj

Sub12

IV:Maj

C:Maj

Sub11

II:Min

A:Min

Sub12

IV:Maj

C:Maj

Sub11

II:Min

A:Min

Ton4

I:Maj

G:Maj

Figure 8. The harmony tree for Piece 2.

Melody This melody is rather continuous, without any jumps.
This is because none of the chord melody notes are the same. In
this case, the embellishment function connects two notes with a
melodic line taken from a scale. This creates a sense of an ending
of a larger piece, for example the final line of a concerto in which
the musician can affirm the key in a final virtuous line.

6.3 Piece 3
The third and last piece is in the key of E minor and can be found
in Figure 9. A sequence of six chords is generated with a melody
spanning six notes, from C until A.

&

#

?#

œ œ œ œ œ œ œ œ œ œ œ œ œ

œ
œ
œ

œ
œ
œ

œ
œ
œ

œ
œ
œ
œ
#
#

œ
œ
œ
œ

n

#
œ
œ
œ

Figure 9. Piece 3 in E minor.

Harmony This harmony sequence begins with a E:Min chord,
and is followed by a sequence of A:Min, A:Min, F]:Dom7 , B:Dom7 ,
ending with a E:Min chord. In scale degree notation, this cor-
responds to I:Min-IV:Min-IV:Min-II:Dom7-V:Dom7-I:Min. The
harmony tree of this sequence can be found in Figure 10. The end-
ing of this sequence contains same type of cadence as in piece 1,
but this time in minor mode. Just like in major, this sequence af-
firms the key in a strong way, and is considered a good way to close
a musical piece.

Melody Writing melodies in a minor key is slightly trickier than
in a major key. Without going into much detail, in a minor key, if
a melody is ascending, the sixth and seventh note are commonly
raised by one semitone for aesthetic reasons. FCOMP currently
does not take this into account, which means the C and D of the
third chord are unaltered. Fortunately, in this case, that does not

Piece1

Phrase2

Ton4

I:Min

E:Min

Dom9

Dom9

Dom10

V:Dom7

B:Dom7

II:Dom7

F]:Dom7

Sub14

IV:Min

A:Min

Sub14

IV:Min

A:Min

Ton5

I:Min

E:Min

Figure 10. The harmony tree for Piece 3.

create an unpleasant melody. Just like in the previous example, the
melody is continuous, with scales connecting the chords. The third
to last note, E, is the seventh of the chord F]:Maj, and as such
should resolve downwards to D], but it doesn’t. In a future version
of FCOMP, dominant sevenths should be resolved properly, as the
melodic minor scale should be taken into account.

6.4 Discussion
FCOMP is a first step towards a fully functional automatic compo-
sition system. These three examples show that FCOMP is capable
of generating well-formed chord sequences with melodies that are
musically valid in a context of western tonal music. Although the
melodies generated at this stage are simple, the examples show that
with simple rules and a firm harmonic foundation humble but pleas-
ant melodies can be created. The examples also show room for im-
provement on several stages of the composition process. The next
section discusses some of these possible future work directions.

7. Future work
As mentioned before, generation of music to a convincing standard
is a very hard task, and we cannot expect to solve it with a simple
system. As such, we see FCOMP as a first step, a foundation for
future work on music generation using Haskell. We now explore
some of the many possible future work directions for FCOMP.

7.1 Voice leading and counterpoint
While FCOMP generates well-formed harmony sequences, it does
not deal with the performance of the harmony. Currently, chords are
simply output in root position, with all voices in total homophony.
The problem of distributing the notes of a chord into separate
melodic lines is known as “voice leading”. This is an area of active
research in computational musicology (see, for example, Allan and
Williams (2005)). A natural extension of FCOMP is to incorporate
voice leading. This also opens the door to introduce counterpoint
(i.e. a relationship between independent melodic lines). Counter-
point is a well studied and formalised aspect of music, which we
believe makes its implementation easier to grasp.

7.2 Handle repetition
Repetition plays a crucial role in music (Margulis 2014). Melodies
often contain a hierarchy of repeated themes and rhythmic pat-
terns, from small melody parts repeated in different ways, to longer
phrases appearing in a variation or transposition, to structure and
form at the highest level, such the sonata form of exposition, de-
velopment, and recapitulation. Currently FCOMP has no explicit
knowledge of repetition; while repeated harmony sequences may
arise naturally (like in Figure 7), the melody will only include
repetition by chance. This hierarchical nature of melody seems

to lend itself well for modelling in a similar nature to our har-
mony model, possibly with greater room for stochastic processes to
model creativity. We hope to include explicit handling of repetition
in FCOMP through the use of a model of musical form, similarly to
the graph grammars of Quick and Hudak (2013).

7.3 Improve embellishment
The current way we handle embellishment is rather primitive. For
starters, many other forms of ornamentation of repeated notes could
be thought of, and care could be taken to ensure that some forms
of embellishment are more prevalent than others, to prevent the
melody from sounding too random. Furthermore, embellishing
non-consecutive notes by simple scale connection is too naive,
and leads to long sequences of scales, which sound boring. Jumps
could be introduced, taking care to ensure a good balance between
continuity and discontinuity, and between upwards and downwards
movement.

7.4 Rhythm, form, instrumentation, dynamics
At present, FCOMP deals only with harmony and melody gener-
ation. But a piece of music consists of much more; at the very
least, rhythm has to be addressed. For better results, however, the
large-scale structure of the piece has to be considered (the musi-
cal form). Finally, finer details such as the instrumentation and dy-
namics should be considered too. Although intertwined (the instru-
ment choice affects the melody, for example, as not all instruments
have the same range), these aspects can be added incrementally.
Our main priority is to add rhythmical knowledge to FCOMP.

8. Conclusion
In this paper we introduced FCOMP, a system for automatic gener-
ation of harmony and accompanying melody in a functional setting,
designed to be simple and easy to understand and improve. FCOMP
uses advanced functional programming techniques for simplicity,
as these help remove code duplication and enforce semantic con-
straints, helping to prevent errors. We’ve seen how our system can
generate simple but pleasing pieces, and how it can be modified to
support different harmonies and melody styles. We hope to con-
tinue working in FCOMP in the future, as we believe it offers a
great opportunity for research not only in automated composition in
Haskell, but also in advanced functional programming techniques
in practice.

Acknowledgments
The first author is supported by EPSRC grant number EP/J010995/1.
We thank Bas de Haas and anonymous reviewers for comments on
a draft version of this paper.

References
Moray Allan and Christopher K. I. Williams. Harmonising chorales by

probabilistic inference. In Advances in Neural Information Processing
Systems 17, pages 25–32, 2005. ISBN 9780262195348.

Koen Claessen and John Hughes. Quickcheck: A lightweight tool for ran-
dom testing of haskell programs. In Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’00,
pages 268–279. ACM, 2000. doi:10.1145/351240.351266.

David Cope. Experiments in musical intelligence, volume 12. AR Editions
Madison, WI, 1996.

Guido D’Arezzo. Micrologus. Rome: Desclee, Lefebvre et S. Edit. Pont.,
1904, 1026. URL http://imslp.org/wiki/Micrologus_(D’Arezzo,
_Guido).

Kemal Ebcioğlu. An expert system for harmonizing four-part chorales.
Computer Music Journal, pages 43–51, 1988.

http://dx.doi.org/10.1145/351240.351266
http://imslp.org/wiki/Micrologus_(D'Arezzo,_Guido)
http://imslp.org/wiki/Micrologus_(D'Arezzo,_Guido)

Richard A. Eisenberg and Stephanie Weirich. Dependently typed
programming with singletons. In Proceedings of the 2012
Haskell Symposium, Haskell ’12, pages 117–130. ACM, 2012.
doi:10.1145/2364506.2364522.

W. Bas de Haas, José Pedro Magalhães, Frans Wiering, and Remco C.
Veltkamp. HarmTrace: Automatic functional harmonic analysis. Com-
puter Music Journal, 37:4:37–53, 2013. doi:10.1162/COMJ a 00209.

Christopher Harte, Mark B. Sandler, Samer A. Abdallah, and Emilia
Gómez. Symbolic representation of musical chords: A proposed syn-
tax for text annotations. In Proceedings of the 6th International Society
for Music Information Retrieval Conference, pages 66–71, 2005.

Lejaren Arthur Hiller and Leonard Maxwell Isaacson. Experimental music:
composition with an electronic computer. McGraw-Hill, 1959.

Hendrik Vincent Koops, José Pedro Magalhães, and W. Bas de Haas.
A functional approach to automatic melody harmonisation. In Pro-
ceedings of the First ACM SIGPLAN Workshop on Functional Art,
Music, Modeling & Design, FARM ’13, pages 47–58. ACM, 2013.
doi:10.1145/2505341.2505343.

Jean-Benjamin de La Borde. Essai sur la musique ancienne et mod-
erne. Tome premier. Essai Sur La Musique Ancienne Et Moderne.
A Paris: de l’imprimerie de Ph. D. Pierres; et se vend chez Eugène
Onfroy, MDCCLXXX, 1780. URL https://archive.org/details/
essaisurlamusiv100labo.

Steven G. Laitz. The complete musician: an integrated approach to tonal
theory, analysis, and listening. Oxford University Press, 2008. ISBN
9780195301083.

Aristid Lindenmayer. Mathematical models for cellular interactions in
development I. filaments with one-sided inputs. Journal of theoretical
biology, 18(3):280–299, 1968.

José Pedro Magalhães and W. Bas de Haas. Functional modelling of
musical harmony: an experience report. In Proceeding of the 16th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’11, pages 156–162. ACM, 2011. doi:10.1145/2034773.2034797.

José Pedro Magalhães and Johan Jeuring. Generic programming for in-
dexed datatypes. In Proceedings of the 7th ACM SIGPLAN Work-
shop on Generic Programming, WGP ’11, pages 37–46. ACM, 2011.
doi:10.1145/2036918.2036924.

Elizabeth Hellmuth Margulis. On Repeat: How Music Plays the Mind.
Oxford University Press, 2014. ISBN 9780199990825.

Francois Pachet. The continuator: Musical interaction with style. Journal
of New Music Research, 32(3):333–341, 2003.

Simon Peyton Jones, editor. Haskell 98, Language and Libraries. The Re-
vised Report. Cambridge University Press, 2003. Journal of Functional

Programming Special Issue 13(1).
Przemyslaw Prusinkiewicz. Score generation with L-systems. In Pro-

ceedings of the 1986 International Computer Music Conference, pages
455–457. Ann Arbor, MI: MPublishing, University of Michigan Library,
1986.

Donya Quick and Paul Hudak. Grammar-based automated music compo-
sition in Haskell. In Proceedings of the first ACM SIGPLAN workshop
on Functional art, music, modeling & design, FARM ’13, pages 59–70.
ACM, 2013. doi:10.1145/2505341.2505345.

Hugo Riemann. Vereinfachte Harmonielehre; oder, die Lehre von den
tonalen Funktionen der Akkorde. Augener, 1893.

John Roeder. Pitch class. In Oxford Music Online. Oxford Uni-
versity Press, 2013. URL http://www.oxfordmusiconline.com/
subscriber/article/grove/music/21855. Accessed May 22.

Martin Rohrmeier. A generative grammar approach to diatonic harmonic
structure. In Proceedings of the 4th Sound and Music Computing Con-
ference, pages 97–100, 2007.

Martin Rohrmeier. Towards a generative syntax of tonal harmony. Journal
of Mathematics and Music, 5(1):35–53, 2011.

Arnold Schönberg. Fundamentals of Musical Composition. Faber & Faber,
Incorporated, 1967. ISBN 9780571196586. URL http://books.
google.co.uk/books?id=N-lCPgAACAAJ.

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios
Vytiniotis. Complete and decidable type inference for GADTs. In
Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’09, pages 341–352. ACM, 2009.
doi:10.1145/1596550.1596599.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, volume 37 of Haskell ’02, pages 1–16. ACM, December 2002.
doi:10.1145/581690.581691.

Mark J. Steedman. A generative grammar for jazz chord sequences. Music
Perception, pages 52–77, 1984.

Arnold Whittall. Functional harmony. In The Oxford Companion
to Music. Oxford University Press, 2013. URL http://www.
oxfordmusiconline.com/subscriber/article/opr/t114/e2730.
Accessed May 22.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a
promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation, pages 53–66. ACM,
2012. doi:10.1145/2103786.2103795.

http://dx.doi.org/10.1145/2364506.2364522
http://dx.doi.org/10.1162/COMJ_a_00209
http://dx.doi.org/10.1145/2505341.2505343
https://archive.org/details/essaisurlamusiv100labo
https://archive.org/details/essaisurlamusiv100labo
http://dx.doi.org/10.1145/2034773.2034797
http://dx.doi.org/10.1145/2036918.2036924
http://dx.doi.org/10.1145/2505341.2505345
http://www.oxfordmusiconline.com/subscriber/article/grove/music/21855
http://www.oxfordmusiconline.com/subscriber/article/grove/music/21855
http://books.google.co.uk/books?id=N-lCPgAACAAJ
http://books.google.co.uk/books?id=N-lCPgAACAAJ
http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1145/581690.581691
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e2730
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e2730
http://dx.doi.org/10.1145/2103786.2103795

	Introduction
	Notation
	How to use FComp
	Roadmap

	Related work
	A brief introduction to music theory
	Generating harmony
	Representing harmony structure hierarchically
	Concrete representation as GADTs
	Generic data generation with constraints
	Examples

	Generating melody
	Candidate melody notes per chord
	Filter initial candidates
	Pick one focal candidate per chord
	Embellish

	Examples
	Piece 1
	Piece 2
	Piece 3
	Discussion

	Future work
	Voice leading and counterpoint
	Handle repetition
	Improve embellishment
	Rhythm, form, instrumentation, dynamics

	Conclusion

