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We present a case-study of using functional programming in the real world at a very large scale. At Standard
Chartered Bank, Haskell is used in a core software library supporting the entire Markets division – a business
line with 3 billion USD operating income in 2023. Typed functional programming is used across the entire tech
stack, including foundational APIs and CLIs for deal valuation and risk analysis, server-side components for
long-running batches or sub-second RESTful services, and end-user GUIs. Thousands of users across Markets
interact with software built using functional programming, and over one hundred write functional code.

In this experience report we focus on how we leverage functional programming to orchestrate type-driven
large-scale pricing workflows. The same API can be used to price one trade locally, or millions of trades across
thousands of cloud nodes. Different parts of the computation can be run and inspected individually, and
recomputing one part triggers recalculation of the dependent parts only. We build upon decades of research
and experience in the functional programming community, relying on concepts such as monads, lenses,
datatype generics, and closure serialisation. We conclude that the use of functional programming is one of the
main drivers of the success of our project, and we see no significant downsides from it.
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1 Introduction
Functional programming has a long and broad history of use in finance, even if this is not widely
documented. Clancy [3] describes the use of functional programming languages such as Haskell
and OCaml at places like Barclays and Jane Street for at least a decade. The seminal work of
Peyton Jones et al. [9] demonstrated how financial contracts can be suitably encoded and reasoned
about functionally, but arguably the main functional programming tool used in finance is the
spreadsheet. As long as one is ready to accept that spreadsheets are programs [7] – and, moreover,
functional programs [8] – there is no lack of evidence of their widespread use across finance.

The use of functional programming at Standard Chartered Bank involves spreadsheets whether
one chooses to accept them as a functional programming language or not. In 2008, a proprietary
functional language called Lambda was used as a “bridge” between existing C++ code and Microsoft
Excel spreadsheets as an add-in.1 Lambda was designed with a pure interface in mind, and supported
higher-order functions and parametric polymorphism (although these were clunky to use due to
1https://learn.microsoft.com/en-us/office/dev/add-ins/excel/excel-add-ins-overview
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lack of any special syntax in Excel or currying). At that same time, Haskell also started being used
to develop auxiliary tooling. By 2009 Lambda had significant usage by end-users, also outside Excel
with a standalone interpreter. Its lack of a module system and poor type-checking performance
prevented wider adoption; a full-fledged programming language was needed. However, we did not
want to lose the advantages of Lambda, which included easy C++ and Excel integration and the
ability to serialise all values, which greatly simplified cloud computation. Cloud Haskell [5] was
not available at that time, and we did not have the resources to build a custom GHC back end to
target our existing run-time. Instead we decided to develop a dialect of Haskell that would mesh
well with the rest of our ecosystem, and we named it Mu.
main :: IO ()

main = do

tds <- io $ TDS.connectService Nothing

ts <- io Date.now

trades <- io $ TDS.getTrades tds [ TDS.PortfolioId `TDS.Elem ` ["A","B"]

, TDS.Status `TDS.Elem ` ["Live"] ]

(QR.Error sErr , QR.Result res) <- QR.runShepherdQR QR.defaultShepherd ts

[QR.inputTrades trades]

[QR.strategy QR.defAquila

,QR.riskList Nothing [IR.Delta.risk]]

Core.saveValue "IR.Delta.dat" res

sendAny def { to = ["recipient@example.com"]

, from = "sender@example.com"

, subject = "IR Delta Risk"

, body = unlines [ "Number of trades considered: "

& show (A.size trades)

, "Number of errors: " & show (A.size sErr)

, "IR delta attached." ]

, attachments = ["IR.Delta.dat"] }

Listing 1. Computing interest rate delta and emailing results in Mu

Mu is often indistinguishable from Haskell by looking at syntax alone, but it comes loaded with
a powerful financial analytics library and many useful utilities for working with data at scale.
Listing 1 shows how simple it is to fetch (potentially hundreds of thousands of) live trades, compute
their interest rate (IR) delta via a cloud computing provider, and email the result – all in a few lines
of Mu.
The rest of this paper shows how we use Mu to simplify financial analytics workflows using

functional principles at all stages, from architecture to implementation. Section 2 introduces our
domain and the Mu compiler in more detail. Section 3 showcases QuickRisk, a type-driven API to a
pricing library, while in Section 4 we present a few other important components briefly. We discuss
interoperability with other programming languages in Section 5 before concluding in Section 6.

2 Context
In this section we provide some context needed to understand the rest of the paper.

2.1 Financial Markets
The work described in this paper is built by the Modelling and Analytics Group (MAG), which is
part of the Markets division of Corporate and Investment Banking of Standard Chartered Bank. This
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part of banking typically deals with large volume and/or large scale financial transactions between
large corporate clients and other financial institutions [2]. The types of financial transactions
vary in complexity and domain. One simple example is a foreign exchange (FX) spot transaction
(exchanging one currency by another at the prevailing market rate). A complex example would
be an airline wishing to hedge the cost of aircraft fuel over the next six months in a given foreign
currency.
In order to be able to quote prices for these kind of transactions and to manage exposure to

market risks, large banks typically employ a Quantitative Analytics function that is responsible
for developing proprietary financial models. MAG operates in this space, as part of Front Office
for frequent and direct interaction with trading and structuring functions. Next to the financial
mathematics aspects, our group is also responsible for delivering end-to-end solutions relying
on quantitative models, such as server-side components for intraday risk analysis of prospective
deals, visualisation tools for complex financial data, and daily bank-wide price and sensitivity
computation. This requires building robust software that can perform common tasks across varied
inputs in a generic fashion, while catering for (and abstracting from) the millions of individual
details in market conventions and prices.

2.2 Cortex
Cortex is the name of the entire software ecosystem developed by MAG for financial analytics in
Markets. It includes:

• Various libraries for quantitative financial modelling
• The Mu compiler
• Interfaces to Excel, C++, .NET, Java, and Python
• Dozens of end-user GUI applications
• The code for several production server-side components, such as an intraday risk service

Its codebase consists of Mu code (over 7 million lines), C++ (under 2 million lines), Haskell (around
500 thousand lines), and some F# for the Windows GUI library. Figure 1 shows the evolution of the
number of lines of code written in each programming language since the project inception in 2008.
Cortex is built and released automatically on a daily basis via a continuous integration system,

and then used directly by end-users or by other teams who integrate it into their own solutions.
We have our own build and test infrastructure, and all code changes are run against over 5000 tests
(in a mix of unit and property-based testing, covering compiler correctness as well as financial
analytics). We also have a custom mechanism for assigning ownership of parts of the codebase
to specific groups of users, and tracking review approvals on changes outside the ownership (so
anyone can propose any change, but different changes by different users may require different
approvals).

2.3 Mu
Mu is the programming language of choice for all development in Cortex. At the surface, Mu looks
extremely similar to Haskell; one often cannot tell by simply looking at source code, as Listing 1
reveals. However, looking deeper we find several important differences.

2.3.1 Runtime and semantics. Mu code is compiled to bytecode with a small runtime interpreter.
The runtime is strict, but some constructs have lazy operational semantics. This might seem
strange, but a compromise is needed, otherwise Mu would be too different from Haskell. Haskell
programmers expect expressions like fromMaybe undefined (Just ()) to just work, but these would
fail in a fully strict setting, since undefined would be evaluated before fromMaybe. We use compiler
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Fig. 1. Lines of code over time

pragmas to introduce laziness in crucial places so that programmers do not need to think (much)
about evaluation order when writing code.

The Mu compiler also uses lazy semantics to do aggressive code motion for performance optimi-
sation, such as let-clauses lifting, inlining, and common sub-expression identification and lifting.
The worst that can happen is that errors may happen in a different order at runtime (or not at all),
compared to a fully strict implementation.

In general, the choices taken in Mu semantics are informed by theory but driven by pragmatism.
Mu does not have formal semantics and this is normally not a concern in practice. We have a large
monorepo and we occasionally make small tweaks to semantics together with code rewrites in
a single change request. The foundations of the compiler have not changed much over time, and
they are not the main focus of our work as a financial institution.

2.3.2 Foreign-function interface. There is no FFI: all C++ functions are called natively, thanks to a
unified C++ IFunction interface which both C++ and Mu functions adhere to. C++ can apply any
IFunction natively, so we get seamless calling across languages. All C++ functions of interest are
assigned a globally unique identifier which the runtime system uses for finding the compiled object
code. This is essential for cross-platform and cross-version code execution.

2.3.3 Recursion. Direct recursion is discouraged (and disabled by default) due to lack of tail-call
optimisation, which is not easy to implement when recursive calls can freely cross between C++
and Mu. We do have tail-recursion specialised to one operation, and use it to define other recursive
primitives: loopM :: Monad m =>(a -> m (Either a b)) -> a -> m b.
A positive side-effect of this limitation is that it encourages programmers to use recursion

combinators. We also find that the need for explicit recursion arises infrequently in our setting: it
is used by under 4% of the modules.

2.3.4 Data structures. Strings are a native datatype in Mu, not a list of characters. They are
implemented as UTF-8 C++ std:string. Mu does not have a Char type.
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Lists are not the natural choice for collections of data; we prefer relations [1], even though our
lists are implemented as arrays. Relations are (abstract) first class objects with a pure API. They
can be pictured as a tabular structure with named and typed columns followed by rows of data.
There is no material ordering of either columns or rows. We have an efficient implementation of
the relational operators with well-defined algebraic properties, which makes it easy to reason about
and helps with refactoring. We regularly work with relations containing millions of rows and over
one hundred columns.

2.3.5 Memory management. We have a C++ implementation of records and use it for representing
Mu datatypes. Regular C++ reference counting-based memory management applies to these. Data
created via GHC libraries is managed by GHC’s own garbage collector within its runtime system.
The lack of a unified view on memory use and its connection to the original source code can make
it sometimes challenging to track identifiers when debugging.

2.3.6 Serialisation. (De-)serialisation is supported by default for mostly everything in Mu. This
makes it easy to save any partially complete computation and restart it on another machine, even
across operating-system and architecture boundaries. We rely on full (de-)serialisation heavily for
parallel computing.

2.3.7 Extensions. Mu does not support all of GHC’s extensions. Notably, it lacks existential quan-
tification, GADTs, and rank-2 (and higher) types – but it supports multi-parameter type classes,
functional dependencies, and poly and data kinds. We find that the current set of extensions provides
a reasonable balance between expressiveness and compiler complexity, although having GADTs
would be useful.

2.3.8 Separate compilation. Mu is a whole-program compiler, so the entire source of all libraries is
used in each compilation. This has some advantages: there is no need for runtime dictionaries for
class instances, and all function calls are monomorphised at their usage sites.
It does also come with some challenges. For example, a typical program can have thousands

of transitive dependencies, and compilation times of 5 minutes are frequent. Our largest appli-
cations can take 10 minutes to compile. Long compilation times, in turn, affect some program
design decisions. Sometimes we analyse module dependencies and separate type declarations from
functionality, to minimise the amount of code brought into scope – but this is a good practice
anyway. In select cases we resort to dynamic module imports; these happen at runtime, triggering
compilation of the module being imported if this wasn’t done in advance, and leading to potential
runtime type errors (which would have otherwise been compile-time errors).
In terms of program size, one of our largest applications consists of 850,000 lines of source

code from 4,000 modules, and compiles to a core language expression with 1,000,000 nodes (after
optimisation, all figures approximate).

2.3.9 SafeIO. Many common effectful Haskell functions live in the SafeIO monad in Mu, rather
than IO. We use SafeIO to distinguish “read-only” effects; for example, we have the function
putStrLn :: String -> IO () but readFile :: String -> SafeIO String. Such operations can be lifted
with io :: SafeIO a -> IO a, but we provide a perform :: SafeIO a -> a function with fewer caveats
than the infamous unsafePerformIO.

Despite these differences, we are currently working on replacing the Mu front end with GHC [6].
This involves using GHC to compile Mu to GHC Core, translating Core to the current Mu compiler
intermediate representation, and then using the rest of the existing pipeline.
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Fig. 2. SimplifiedQuickRisk workflow Fig. 3. Minimal pricing workflow

3 QuickRisk
In this section we present QuickRisk, a type-driven API to our main pricing library, and also its
underlying Work API and the Shepherd job scheduler it is typically used with. QuickRisk allows us
to generate and execute type-driven workflows that depend on readily available inputs and outputs
requested by the caller. Its goals are:

• To provide a single API allowing different kinds of pricing and other derived computations
to be performed in a consistent sequence;

• To have a type-driven workflow generation, that is, the ability to generate the minimal
workflow required to compute the requested outputs;

• To separate the concerns of workflow generation and its execution (e.g. sequentially in
process, in parallel, or using a job scheduler).

In this paper we present a simplified version of the API which relies on two sources of data. One
source is trade data, i.e. a representation of financial contracts as described by Peyton Jones et al.
[9]. We use a variant of this representation of financial contracts, which is particularly useful for
implementing “generic” operations across all trade types, but most analytics are implemented per
trade type. The other source is market data, either observed or predicted values (e.g. the exchange
rate between two currencies). With these two sources of data, QuickRisk allows us to compute
different kinds of financial analyses in separate stages with inter-dependencies, and to extract the
final results we are interested in. As we cannot make the library itself available for use outside our
company, we focus on highlighting aspects where we think functional programming insights were
valuable to us, and could be valuable to others as well. Code listings referred in this section can be
found in the appendix.

Figure 2 illustrates the computation graph for the simplified QuickRisk workflow we present in
this section; Figure 6 shows a complete QuickRisk workflow, with many details that we elide for
conciseness. Nodes correspond to the different stages of computation. In the simplified QuickRisk
workflows, rounded nodes use IO while the rectangular ones depict pure computations.

• Trade produces the portfolio (i.e. a trade set). Depending on input parameters these can be
read from a file or queried from a database.

• Market produces the market data. It depends on Trade as we do not want to fetch all possible
market data but only that required to price the current portfolio.

• Price computes the price of the trades using the trade and market data, calling trade-specific
quantitative pricing algorithms.

• Attribute extracts some specific information about the trades, like the total notional of the
trade or the currencies it uses. These are often useful for grouping or aggregating the final
result.

• Result provides a unified view of the data computed in both the Price and Attribute
stages, e.g. total value per currency.

Before going into more details about QuickRisk we first describe theWork API that is used to
define and execute (acyclic) graphs of computations in Mu.
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3.1 The Work API
The main goal of the Work API is to separate the concerns between the definition of a sequence of
inter-dependent computations (represented as a DAG) and the execution of these computations. In
this API, a node (or Work) represents a single unit of computation, and it can be either:

• A constant (already computed) value;
• The work of applying a function to another Work item, and thus creating a dependency
between these;

• The lifting of an IO computation.
In the absence of existential quantification in Mu, we make use of two specific types, Any and
Fun, which are used to embed values (resp. functions) of any type to represent untyped work
units (Listing 2). This Work_ ADT is not exposed to users but forms the basis of a typed interface
(Listing 3), mimicking the typed ADT we could write directly if Mu had existential quantification.

In order to execute Works which share common dependencies, we first define WorkPool as a set
of Work representing all the work nodes we are interested in running (using list as implementation
for convenience). Sharing of nodes during execution is achieved using an identification mechanism
on Work which associates each node with a unique Key. This avoids duplication of (sub-)work
between the different elements of the WorkPool and allows retrieving results based on the input
Work from the final computation result. These WorkPool can then be evaluated using different
methods, such as:

• Sequentially, simply reducing the work graph in the current thread;
• In parallel, running each of the nodes in a different thread or process, up to some limit;
• Using Shepherd, our internal job scheduler introduced in Section 3.3.

The actual implementation of resolving a WorkPool into a WorkResult using each of the different
methods is out of the scope of this paper.

3.2 QuickRisk Workflow
In this section we explain how QuickRisk uses the Work API to produce computation graphs that
depend on the output type and the provided inputs (if any). For each run, QuickRisk generates
a graph that only contains the work units required to generate the specified output, and uses
the specified inputs to replace sub computations with constant work nodes. Figure 3 depicts
an example where the Trades have already been fetched and are provided as input and only
the Price output is required. This graph corresponds simply to the following QuickRisk call:
runQR [inputTrade t] :: SafeIO Price.

Workflow construction. The first stage in building the computation graph for each call is the
construction of the complete workflow. This is done by defining the different stages of computation
(i.e. the nodes of the graph) and assigning a Work unit to each of them, which is either a constant
value that is provided as input or a function to compute this node depending on other nodes or IO.
We use a mapping from Stage to Any to represent the provided inputs and a similar mapping for
Works (Dict is the type of dictionaries (HashMaps) in Mu, D.value is the total lookup function).

The graph construction uses the list of inputs that have been passed directly to the QuickRisk call
to inject constant value nodes in the graph instead of functions or IO nodes that would normally
be used to produce such stages (as in the tradeWork function). See Listing 4 for more details.

WorkPool Generation. The WorkSpace defined before allows us to map any QuickRisk stage to a
corresponding unit of workwhere thesework share dependencies to avoid duplicating computations.
We nowwant to generate a minimal WorkPool containing only the nodes corresponding to specified
output nodes and their dependencies. The QuickRisk API also lets users attach IO actions to specific
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Fig. 4. QR API call Fig. 5. QR CLI call

outputs (e.g. save to file, display, etc.) which leads to the generation of extra leaf nodes corresponding
to these actions:
data Act = Sink | Display | Save

Here, Sink requests a node without doing any additional action. Given a list of outputs we create
the minimal WorkPool by:

• Selecting the nodes that are part of the associated output;
• Attaching an extra Work to the non-Sink outputs to execute the requested action. This is
done by the toWorkPool function (Listing 5).

Type-driven output. This function generates the minimal computation graph for the specified output,
running all the specified output actions (e.g. Save) as the corresponding nodes get executed. When
QuickRisk is used with a command line interface, the list of [(Stage,Output)] can be easily
derived from the command line arguments, but when it is used as a function call in Mu this list is
derived from the expected output type, and the corresponding value is extracted from the WorkPool
execution (i.e. the WorkResult). These two steps are done using type classes. The Collect type
class defines which Stages are required to generate the requested output types. Similarly the
Workable class defines a function that extracts the value of the expected type from a WorkSpace
and its execution WorkResult (Listing 6).

Using these two classes we can now write the runQR function, which is the top-level function of
the QuickRisk API:
runQR :: forall r . (Collect r, Workable r) => Inputs -> Parameters -> SafeIO r

runQR inputs tp =

runReader workable . (, w)

<$> runWork (toWorkPool (map (, Sink) $ collected (Proxy :: Proxy r)) w)

where w = workSpace inputs tp

Here runWork is one of the possible methods to run a WorkPool and compute its corresponding
WorkResult. For illustration, Figure 4 represents the computation graph generated from the code
runQR [inputTrd trd , inputPrc prc] mempty :: SafeIO (Result , Attribute)

while Figure 5 is the graph generated using a CLI call
qr --inputTrades=myFile --display=Res ,Attr

3.3 Shepherd
Shepherd is a workflow management system and job scheduler aware of (typed) job dependencies,
implemented inMu. Figure 6 shows a screen capture of the Shepherd GUI client (also implemented in
Mu) with a graph plot of a QuickRisk run in progress. There are a variety of workflow management
systems in the market, but none immediately satisfied all our needs, so we wrote our own. The
design goals for Shepherd are:
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Fig. 6. The Shepherd GUI application.

• To have a robust process management strategy, in particular dealing well with jobs that may
crash or otherwise misbehave;

• To be able to manage dependencies between different jobs;
• To support periodic jobs on flexible schedules (e.g. daily, hourly, every other Friday at 2pm
New York time);

• To allow jobs to declare resources needed, and to schedule them based on available resources;
• To support running jobs on multiple Cortex versions;
• To be usable as a library, and as client or server;
• To not require a process constantly running, or anything to run on system boot (therefore
being resilient to system reboots and being able to run as a non-privileged user).

Shepherd pairs particularly well with QuickRisk workflows as these tend to be large and long-
lived, but we use it in many other settings as well.

4 Others
We have chosen to showcase QuickRisk as a prime example of a functional component at Standard
Chartered Bank, but we have many other examples. We briefly describe a few of them in this
section.

Lenses. We use both fclabels-style2 lenses as well as profunctor optics3 heavily, in particular in
the context of selective manipulation of values of large datatypes (dozens of fields and constructor
alternatives).

Monadic API for RESTful queries. We have built a monadic API to a RESTful service that auto-
matically optimises queries by batching (collect queries and perform them all at once) and bulk
(query full contents upfront and perform local queries subsequently) querying, which change the
query behaviour depending on the desired style without requiring changing code (apart from the
top-level invocation).

Virtual Widget. We rely on the Windows Presentation Foundation for building GUIs in Windows,
and the Mu library for this purpose is called Widget. More recently we have built Virtual Widget on
top of it, in a Model-View-Update style [4]. Virtual Widget allows us to keep GUI and business logic
2https://hackage.haskell.org/package/fclabels
3https://hackage.haskell.org/package/lens
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separate, enables simple persistence of application state, and typically leads to more responsive
GUI applications thanks to automatic avoidance of UI update loops.
Both libraries support an HTML + JavaScript back end as well, so the same code gives rise to

an application that can run on a Windows desktop, or an HTTP server (running on Windows or
Linux) that provides the same functionality over the intranet.

Market Data Framework. For the purposes of parsing and manipulating market data, we have
developed a domain-specific language (DSL) at a high level of abstraction. It is intended for use by
domain experts in financial data modelling. The resulting models work in real-time, publishing
streaming data to an internal data bus, which is then used as a data source for financial analysis.
The models are stored in a database, and can be viewed as a kind of stored procedures. At the start
of each business day, the active models are loaded from the database and run on high-availability
servers.
The DSL is a declarative, pure, dynamically-typed, first-order functional language comprising

both standard constructs for control flow and working with structured data, and also highly
specialised constructs to facilitate financial modelling. Given that it works on streaming data, it
can also be seen as a (synchronous) data-flow language, but it is semantically stateless: the model
is a pure function mapping only input to output for the current point in time.
Domain experts develop models through a purpose-built IDE that allows the models to be

visualised as data-flow graphs with extensive support for troubleshooting and debugging, including
the ability to evaluate (fragments of) models on live or canned data for instantaneous feedback.
There are actually two flavours of the DSL. One is the User-Facing Language (UFL), developed

for use in the IDE to support model development and debugging. The other is the Server-Facing
Language (SFL), which, while still being an interpreted language, is more of a “core language”
intended for efficient evaluation. The translation from UFL to SFL includes an optimisation pass
with common sub-expression elimination and arithmetic simplifications, as well as statically
arranging the code for incremental evaluation for nodes depending on inputs that are expected to
change infrequently, and static load balancing informed by a cost model for parallel evaluation.
Our implementation makes extensive use of concepts like (bi-)functors, profunctors, folds, monads,
monad transformers, and recursion schemes (catamorphisms, anamorphisms, hylomorphisms, etc).

Risk schemas. We deal with many different kinds of financial data and analytics, but we also need
a way to conveniently handle all data generically. To this end, we have defined a framework for
encoding structured risk data as a typed relation, with automatic derivation of an SQL representation
(which is particularly useful for clients outside of Cortex, as explained in Section 5.1). This is achieved
by classifying each column into one of three distinct categories:

Position A unique identifier for the position. Typically this is single column uniquely identify-
ing a trade, but could also be a portfolio or product type, for example.

Coordinates Zero or more columns forming an n-space within which risk results are rep-
resented. The dimensionality of this space is determined by the specifics of the data. For
example, a scalar is sufficient to capture fair value, so a zero-dimensional space is sufficient.
For FX delta we need to distinguish between currencies so we enumerate this in a 1-space
represented by one CURRENCY column. Following the same reasoning we arrive at a 3-space
for IR delta (currency, curve, tenor).

Value The resulting sensitivity and auxiliary information (error and log data). This is a fixed
set of columns common to all schemas. Values are required to be additive over positions, so
arbitrary aggregation is well-formed (as long as the coordinate space is preserved).
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This column categorisation is encoded in Mu at the type level for each risk scenario, and is used
to generically convert relational data to and from SQL.

5 Interoperability
While the components we have described are all implemented in Mu, we often need to communicate
with components built in non-functional programming languages, and we also expose direct Mu
functionality to other languages. In many cases our components are only one piece in a larger
technology solution, so it is essential to ensure we are both able to take inputs from as well as
provide outputs to other components. There are fundamentally three ways to deal with this; we
describe each of them in detail.

5.1 Avoiding the Issue
Usually the easiest approach is to have components communicate via plaintext files (e.g. CSV)
or storage (e.q. SQLite with only primitive tyeps) whenever possible. This is often the case for
end-of-day data analyses and reporting, and communicating via files or shared databases has the
advantage of simplifying future architectural changes. For example, a replacement component
can be built without changing the existing component, and it is easy for several components to
consume a shared input.

5.2 Exposing Functionality as a Service
Another approach is to provide a REST-ful service for specific functionality. This is often more
suitable for request/response interactions, and JSON, XML, or FpML4 are common ways to encode
the request and/or response.

5.3 Exposing Functionality as an Interface
Finally, we also provide some specific direct interfaces to certain programming languages. These
require an initial effort to design and implement an adequate interface, as well as an ongoing
effort to ensure the interface remains up-to-date with all Mu functionality as the language evolves,
but the effort is justified when there is significant demand for ad hoc functionality from other
environments.

6 Conclusion
In this report we showcased a few of the main ingredients of Cortex, with a particular focus on the
Mu language and howwe use it to develop quantitative financial software at large. We conclude with
a discussion of the advantages and disadvantages of using functional programming in our setting;
while noting that we are far from a controlled setting where different programming language
techniques could be formally compared (e.g. by solving the same problem with the same budget
over two separate teams and technologies), we do observe some patterns from our perspective, and
we think at least some may be applicable in a general setting.

6.1 Advantages
Fewer bugs One of the main advantages from our use of Mu is that entire classes of bugs

are absent thanks to a strong, static type system and memory management. A significant
portion of time spent debugging our C++ code is on segmentation faults, which simply do
not happen in Mu-only code. Purity by default, controlled effects, and hardly any explicit
array indexation go a long way in preventing bugs.

4Financial products Markup Language: https://www.fpml.org/.
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Types as structure We rely heavily on algebraic datatypes to structure our code, and on
“types as documentation” whenever appropriate. In particular, each different kind of financial
product (e.g. “FX Forward” or “IR Swap”) is modelled by a different Mu datatype. This
simplifies data migration and evolution as the type-checker points out all the places in the
code that need to be changed (although we still have to take care of compatibility between
clients on different versions or stored data).

Developer productivity While stressing that we have not compared this in a controlled setting,
we generally find that our team can deliver similar end-user solutions in a shorter time-frame
and/or with fewer developers than another internal team that uses Java and Scala as their
technologies of choice. We find no significant difference in terms of hardware requirements.

6.2 Myths
We do not see any significant downsides from our use of functional programming, so we choose to
instead address some myths often associated with it.

Interoperability We already covered in Section 5 how we communicate across the program-
ming language barrier, and we believe this is not significantly different in a setting without
functional languages, nor do we think it is something that can be avoided in general – large
systems will always require interaction between components using different technologies.
There are situations where such interactions may be made easier by the use of mainstream
programming languages. For example, some web services and libraries may provide official
APIs and example code written in Java or C, but will rarely do so for Haskell. But in our
experience, the amount of time spent implementing a wrapper Mu API becomes quickly
negligible over the lifetime of a project.

Performance That low-level languages are generally faster at program execution than high-
level languages is not a myth, but an accepted fact. However, there is an exaggerated percep-
tion of how much and how often runtime performance must be a deciding factor in choice of
programming language. In our setting (and note, in particular, that we are not involved in
high-frequency trading) we find that the overhead of using a high-level language is minor;
most of the end-to-end time to obtain a result is spent on database interaction (often across
long distances). It is also generally clear which algorithms are best implemented in C++ (e.g.
root-finding, Monte-Carlo simulation), and our seamless interaction between Mu and C++
(Section 2.3.2) makes it easy to write code involving the two languages.

Hiring Lack of developers with Haskell expertise is often cited as a concern for wider Haskell
adoption in industry. In our experience, having hired over 100 developers whose main focus is
to write Haskell/Mu, this has never been a limiting factor in team growth or business delivery.
While we notice some trends depending on location and seniority, each of our open roles
generally attracts between 10 and 30 candidates, and typically 3 to 5 qualify to go through
our full interview process. We find that candidates that have demonstrated typed functional
programming experience (whether in industry, academia, or by personal hobby) fare well in
our interview process, which simplifies the problem of finding good candidates.

In conclusion, using functional programming proved to be a significant catalyst in our setting,
and we hope our experience can motivate others to continue expanding the use of functional
programming in industry.
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A Supplementary Material

data Work_ = WorkPure Fun

| WorkApp Work_ Work_

| WorkIO (Any -> IO Any) Work_

newtype Work a = Work {unWork :: Work_}

type WorkPool = [Work_]

toKey :: Work_ -> Key

type WorkResult = Map Key Any

Listing 2. Work internals

workPure :: a -> Work a

workPure x = Work $ WorkPure $ cast $ \() -> x

workApp :: Work (a -> b) -> Work a -> Work b

workApp a b = Work $ WorkApp (unWork a) (unWork b)

workWorkIO :: Work (IO a) -> Work a

workWorkIO a = Work $ WorkIO (fmap (toAny :: a -> Any) . fromAny) $ fromWork a

getResult :: WorkResult -> Work a -> a

getResult wr w = fromAny <$> lookup (toKey w) wr

Listing 3. Typed Work API

data Stage = Trds | Mkt | Prc | Attr | Res

type Inputs = Dict Stage Any

type WorkSpace = Dict Stage (Work Any)

tradeWork :: Inputs -> TradeParams -> Work Any

tradeWork input p = maybe (workIO $ toAny <$> queryTrades p) workPure

$ D.value Trds inputs

workSpace :: Inputs -> Params -> WorkSpace

workSpace inputs Params{tradeParams ,mktParams} =

D.fromList [ (Trds , tradeWork inputs tradeParams)

, (Mkt , mktWork inputs trdWk mktParams)

, (Prc , priceWork inputs trdWk mktWk)
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, (Attr , attrWork inputs trdWk)

, (Res , resWork inputs prcWk attWk) ]

Listing 4. Workflow construction

toWorkPool :: [(Stage , Output )] -> WorkSpace -> WorkPool

toWorkPool outP ws = mconcat . map include $ [Trds .. Res]

where include :: Stage -> WorkPool

include s = mconcat . concat $ [ workPool (D.value s ws) : wps

| not . L.null $ os ]

where wps = L.map (outputWork w) $ L.filter nonSink os

os = [ o | (s1,o) <- outP , s == s1 ]

Listing 5. Work pool

class Collect s r where

collected :: Proxy r -> s

instance (Monoid s, Collect s a, Collect s b) => Collect s (a, b) where

collected _ = collected (Proxy :: Proxy a) <> collected (Proxy :: Proxy b)

instance Collect [Stage] [Trade] where

collected _ = [Trds]

class Workable r where

workable :: Reader (WorkResult , WorkSpace) r

instance (Workable r1, Workable r2) => Workable f (r1, r2) where

workable = (,) <$> workable <*> workable

instance Workable Price where

workable = reader $ Price . castAny . g

where g (r, w) = getResult r (D.value Prc w)

Listing 6. Type-driven output
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